Profile

OHTA, Hiromichi (太田 裕道)

hiromichi.ohta(at)es.hokudai.ac.jp hiromichi.ohta1971(at)gmail.com

Room: (N20W10, Sapporo) Research Institute for Electronic Science 3F 03-108-2
TEL & FAX: +81-11-706-9428
keywords: Oxide thermoelectrics, Transparent oxide semiconductor devices, Electric field thermopower modulation, Solid state electrochemical devices, Thermal transistors
orcid0000-0001-7013-0343

Materials Science

The date of birth 21 September, 1971
Blood type O
Home town Nagoya, Japan
Hobby Driving a car, Fly fishing, Snowboarding

Biography

After graduating from the Faculty of Engineering, Saitama University in March 1994 and completing the master’s program in the Department of Applied Chemistry, Graduate School of Engineering, Nagoya University in March 1996, he was a researcher at Sanyo Electric Co., Ltd., and HOYA Co., Ltd. After working at ERATO Hosono Transparent ElectroActive Materials Project, he became an Associate Professor at the Graduate School of Engineering, Nagoya University in 2003, and a Professor at Research Institute for Electronic Science, Hokkaido University in 2012. Ph.D. (Engineering) (2001 Tokyo Institute of Technology)

Curriculum Vitae

Academic Background

2001  Ph.D, Tokyo Institute of Technology (Supervisor: Prof. Hideo Hosono)

1996  M.E., Nagoya University (Supervisor: Prof. Kunihito Koumoto)

1994  B.E., Saitama University (Supervisor: Prof. Takashi Mitamura)

1990  Graduation, Meiwa High School (Aichi Prefecture)

Professional Carrier

2021 – Current  Deputy Director at RIES, Hokkaido University

2012 – Current  Professor at RIES, Hokkaido University

2008 – 2012  Researcher at JST-PRESTO

2003 – 2012  Associate Professor at Nagoya University

2001 – 2003  Group Leader at Hosono Transparent ElectroActive Materials Project, JST-ERATO

1999 – 2001  Researcher at Hosono Transparent ElectroActive Materials Project, JST-ERATO

1998 – 2003  HOYA R&D center, InGaZnO4 and ITO

1996 – 1997  SANYO Electroc Co., Development of cathode for Li-ion batteries

Research Interests

Functional oxide, Epitaxial films, Optoelectronic devices, Thermoelectrics

Selected Publications

[25] K. Kang, H. Ohta et al., ACS Applied Electronic Materials (2023).

[24] Q. Yang, H. Ohta et al., Advanced Functional Materials 2214939 (2023).

[23] H. Yang, H. Ohta et al., ACS Applied Electronic Materials 4, 5081 (2022).

[22] X. Zhang, H. Ohta et al., ACS Applied Materials Interfaces 14, 33355 (2022).

[21] X. Zhang, H. Ohta et al., ACS Applied Materials Interfaces 13, 54204 (2021).

[20] H.J. Cho, H. Ohta et al., Advanced Materials Interfaces 8, 2001932 (2021).

[19] Y. Takashima, H. Ohta et al., Journal of Materials Chemistry A 9, 274 (2021).

[18] M. Wei, H. Ohta et al., Advanced Electronic Materials 6, 2000100 (2020).

[17] Q. Yang, H. Ohta et al., Advanced Materials Interfaces 6, 1901260 (2019).

[16] Y. Zhang, H. Ohta et al., Nature Communications 9, 2224 (2018).

[15] H. Ohta et al., Advanced Science 4, 1700696 (2017).

[14] T. Katase, H. Ohta et al., Scientific Reports 6, 25819 (2016).

[13] T. Katase, H. Ohta et al., Advanced Electronic Materials 2, 1600044 (2016).

[12] T. Katase, H. Ohta et al., Advanced Electronic Materials 1, 1500063 (2015).

[11] W.S. Choi, H. Ohta, and H.N. Lee, Advanced Materials 26, 6701 (2014).

[10] H. Jeen, H. Ohta, H-N. Lee et al., Nature Materials 12, 1057 (2013).

[9] H. Ohta et al., Advanced Materials 24, 740 (2012).

[8] H. Ohta et al., Nature Communications 1, 118 (2010).

[7] H. Ohta et al., Nature Materials 6, 129 (2007).

[6] H. Ohta et al., Crystal Growth & Design 5, 25 (2005).

[5] K. Nomura, H. Ohta, H. Hosono et al., Nature 432, 488 (2004).

[4] K. Nomura, H. Ohta, H. Hosono et al.Science 300, 1269 (2003).

[3] H. Ohta et al., Advanced Functional Materials 13, 139 (2003).

[2] H. Ohta et al., Applied Physics Letters 77, 475 (2000).

[1] H. Ohta et al., Applied Physics Letters 76, 2740 (2000).

Awards & Honors

[4] 76th (FY2021) Academic award (The Ceramic Society of Japan)

[3] 32nd (FY2010) JSAP Outstanding Paper Award (The Japan Society of Applied Physics)

[2] 59th (FY2004) CerSJ Awards for advancements in ceramic science and technology (The Ceramic Society of Japan)

[1] 8th (2000, Spring) JSAP Young Scientist Presentation Award (The Japan Society of Applied Physics)

Selected Publications

Practical Indium Oxide-based Thin-Film Transistors

Prashant R. Ghediya, Yusaku Magari*, Hikaru Sadahira, Takashi Endo, Mamoru Furuta, Yuqiao Zhang, Yasutaka Matsuo, and Hiromichi Ohta*, “Reliable operation in high-mobility indium oxide thin film transistors”, Small Methods 2400578 (2024). (August 3, 2024) (DOI: 10.1002/smtd.202400578)

Performance improvement of the thermal transistors

Zhiping Bian, Mitsuki Yoshimura, Ahrong Jeong, Haobo Li, Takashi Endo, Yasutaka Matsuo, Yusaku Magari, Hidekazu Tanaka, Hiromichi Ohta*, “Solid-State Electrochemical Thermal Switches with Large Thermal Conductivity Switching Widths”, Adv. Sci. 11, 2401331 (2024). (June 25, 2024) (DOI: 10.1002/advs.202401331OPEN ACCESS

Peeling off single-crystalline thermoelectric oxide films

Kungwan Kang, Fumiaki Kato, Akitoshi Nakano, Ichiro Terasaki*, Takashi Endo, Yasutaka Matsuo, Hyoungjeen Jeen*, and Hiromichi Ohta*, “Fabrication and Thermoelectric Properties of Freestanding Ba1/3CoO2 Single Crystalline Films”, ACS Applied Electronic Materials 5, 5749-5754 (2023). (October 16, 2023) (DOI: 10.1021/acsaelm.3c01129)

Solid-state thermal transistors realized—An effective, stable solid-state electrochemical transistor has been developed, heralding a new era in thermal management technology—

Qian Yang, Hai Jun Cho, Zhiping Bian, Mitsuki Yoshimura, Joonhyuk Lee, Hyoungjeen Jeen, Jinghuang Lin, Jiake Wei, Bin Feng, Yuichi Ikuhara, and Hiromichi Ohta*, “Solid-State Electrochemical Thermal Transistors”, Advanced Functional Materials 2214939 (2023) (February 21, 2023) (DOI: 10.1002/adfm.202214939OPEN ACCESS

Clarification of the origin of high electron mobility for ultra-high-definition display materials− A big step toward realizing ultra-high mobility transparent oxide thin film transistors exceeding 100 cm2/Vs −

Hui Yang*, Yuqiao Zhang, Yasutaka Matsuo, Yusaku Magari, and Hiromichi Ohta*, “Thermopower Modulation Analyses of High-mobility Transparent Amorphous Oxide Semiconductor Thin-Film Transistors”, ACS Appl. Electron. Mater. 4, 5081-5086 (2022). (September 29, 2022) (DOI: 10.1021/acsaelm.2c01210)

Practical thermoelectric material that shows stable performance at high temperatures in air is discovered — Oxide thermoelectric material with good reproducibility and high performance at a practical level —

Xi Zhang#, Yuqiao Zhang#*, Liao Wu, Akihiro Tsuruta, Masashi Mikami, Hai Jun Cho, and Hiromichi Ohta*, “Ba1/3CoO2: A Thermoelectric Oxide Showing a Reliable ZT of ∼0.55 at 600 °C in Air”, ACS Appl. Mater. Interfaces 14, 33355-33360 (2022). (July 12, 2022) (DOI: 10.1021/acsami.2c08555OPEN ACCESS

Turn an insulator into a high-temperature superconductor with a single electric switch! — A big step forward in the development of all-solid-state superconducting devices that do not use electrolytes —

Xi Zhang*, Gowoon Kim, Qian Yang, Jiake Wei, Bin Feng, Yuichi Ikuhara, and Hiromichi Ohta*, “Solid-State Electrochemical Switch of Superconductor-Metal-Insulators”, ACS Appl. Mater. Interfaces 13, 54204-54209 (2021). (November 4, 2021) (DOI: 10.1021/acsami.1c17014)

A single-crystal that is less likely to transfer heat than a polycrystalline -Guidelines for designing low thermal conductivity materials-

Hai Jun Cho, Yuzhang Wu, Yu-Qiao Zhang, Bin Feng, Masashi Mikami, Woosuck Shin, Yuichi Ikuhara, Yu-Miin Sheu, Keiji Saito, and Hiromichi Ohta, “Anomalously Low Heat Conduction in Single-Crystal Superlattice Ceramics Lower Than Randomly Oriented Polycrystals”, Adv. Mater. Interfaces (2021). (February 16, 2021) (DOI: 10.1002/admi.202001932)

Record-high room temperature thermoelectric figure of merit for metal oxides − Great expectations for the realization of stable and practical thermoelectric conversion materials −

Yugo Takashima, Yu-qiao Zhang*, Jiake Wei, Bin Feng, Yuichi Ikuhara, Hai Jun Cho, and Hiromichi Ohta*, “Layered cobalt oxide epitaxial films exhibiting thermoelectric ZT = 0.11 at room temperature”, J. Mater. Chem. A 9, 274 – 280 (2021). (October 13, 2020) (DOI: 10.1039/D0TA07565E)

Transparent Transistor that Transmits Deep Ultraviolet – Novel Biosensor –
Mian Wei#, Lizhikun Gong#, Dou-dou Liang#, Hai Jun Cho*, and Hiromichi Ohta*, “Fabrication and Operating Mechanism of Deep-UV Transparent Semiconducting SrSnO3-based Thin Film Transistor”, Adv. Electron. Mater. 62000100 (2020).

Caught a glimpse of the operation mechanism of advanced memory device!
Qian Yang, Hai Jun Cho, Hyoungjeen Jeen*, and Hiromichi Ohta*, “Macroscopic Visualization of Fast Electrochemical Reaction of SrCoOx Oxygen Sponge”, Adv. Mater. Interfaces 6, 1901260 (2019).

Electron sandwich doubles thermoelectric performance
Yuqiao Zhang, Bin Feng, Hiroyuki Hayashi, Cheng-Ping Chang, Yu-Miin Sheu, Isao Tanaka, Yuichi Ikuhara & Hiromichi Ohta*, “Double thermoelectric power factor of a 2D electron system”, Nature Communications 9, 2224 (2018). OPEN ACCESS

Thermoelectric energy conversion using blue LED material –New design guideline for high-performance thermoelectric material
Hiromichi Ohta*, Sung Wng Kim, Shota Kaneki, Atsushi Yamamoto, and Tamotsu Hashizume*, “High thermoelectric power factor of high-mobility two-dimensional electron gas”, Advanced Science 4, 1700696 (2017). (DOI: 10.1002/advs.201700696OPEN ACCESS

Window glass becomes a memory device?  – A new information display / storage device –
T. Katase, T. Onozato, M. Hirono, T. Mizuno, and H. Ohta, “A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry”, Scientific Reports 6, 25819 (2016).

An insulator changes into conducting magnet -New way toward high capacity memory device-
T. Katase, Y. Suzuki, and H. Ohta, “Reversibly switchable electromagnetic device with leakage-free electrolyte”, Advanced Electronic Materials 2, 1600044 (2016)

On-demand IR & conductivity controlling device
T. Katase, K. Endo, T. Tohei, Y. Ikuhara, and H. Ohta, “Room-temperature-protonation-driven on-demand metal-insulator conversion of a transition metal oxide”, Advanced Electronic Materials 1, 1500063 (2015)

Oxygen sponge; SrCoOx (Collaboration with Dr. Ho Nyung Lee at ORNL)
H. Jeen,W-S. Choi, M. D. Biegalski, C. M. Folkman, I-C. Tung, D. D. Fong, J. W. Freeland, D. Shin, H. Ohta, M. F. Chisholm and H-N. Lee, “Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge”, Nature Materials 12, 1057 (2013)

One sample optimization of thermoelectric material
H. Ohta, T. Mizuno, S. Zheng, T. Kato, Y. Ikuhara, K. Abe, H. Kumomi, K. Nomura, H. Hosono, “Unusually Large Enhancement of Thermopower in an Electric Field Induced Two-Dimensional Electron Gas”, Advanced Materials 24, 740-744 (2012)

Water switches an insulator into a thermoelectric material
H. Ohta, Y. Sato, T. Kato, S-W. Kim, K. Nomura, Y. Ikuhara, and H. Hosono, “Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal”, Nature Communications 1, 118 (2010) OPEN ACCESS

Giant thermopower of oxide 2DEG
H. Ohta, S-W. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, “Giant Thermoelectric Seebeck coefficient of a Two-dimensional Electron Gas in SrTiO3”, Nature Materials 6, 129 (2007)

Pastable epi NaxCoO2
H. Ohta, A. Mizutani, K. Sugiura, M. Hirano, H. Hosono, K. Koumoto, “Surface Modification of Glass Substrates for Oxide Heteroepitaxy: Pasteable Three-Dimensionally Oriented Layered Oxide Thin Films”, Advanced Materials 18, 1649 (2006)

Transparent organic TFT
H. Ohta, T. Kambayashi, K. Nomura, M. Hirano, K. Ishikawa, H. Takezoe, and H. Hosono, “Transparent Organic Thin-Film Transistor with a Laterally Grown Non-Planar Phthalocyanine Channel”, Advanced Materials 16, 312 (2004)

Transparent flexible a-IGZO-TFT
K. Nomura, H. Ohta, A. Takagi, T, Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature 432, 488 (2004)

High performance transparent oxide TFT
K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, “Thin film transistor fabricated in single-crystalline transparent oxide semiconductor”, Science 300, 1269 (2003)

Reactive Solid Phase Epitaxy
H. Ohta, K. Nomura, M. Orita, M. Hirano, K. Ueda, T. Suzuki, Y. Ikuhara, H. Hosono, “Single-crystalline films of InGaO3(ZnO)m (m=integer) homologous phase grown by reactive solid-phase epitaxy”, Advanced Functional Materials 13, 139 (2003)

Oxide UV-LED
H. Ohta, K. Kawamura, M. Orita, N. Sarukura, M. Hirano, H. Hosono, “Current injection emission from a transparent p-n junction composed of p-SrCu2O2 / n-ZnO”, Applied Physics Letters 77, 475 (2000)

High conducting TCO
H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition”, Applied Physics Letters 76, 2740–2742 (2000)

Original Papers (237)

  1. Binjie Chen, Jinghuang Lin, Bin Feng, Yuichi Ikuhara, Hiromichi Ohta, and Tsukasa Katayama*, “Unusual crystal orientation in hexagonal HoFeO3 multiferroic films and the effect on magnetism”, Cryst. Growth Des. 24, 8439-8444 (2024). (October 3, 2024) (DOI: 10.1021/acs.cgd.4c00930)
  2. Lizhikun Gong, Atsushi Taguchi, Weikun Zhou, Ren Mitsuya, Hiromichi Ohta, and Tsukasa Katayama*, “Ferroelectric BaTiO3 Freestanding Sheets for Ultra-High-Speed Light-Driven Actuator”, ACS Appl. Mater. Interfaces 16, 54146-54153 (2024). (September 27, 2024) (DOI: 10.1021/acsami.4c10044)
  3. Prashant R. Ghediya, Yusaku Magari*, Hikaru Sadahira, Takashi Endo, Mamoru Furuta, Yuqiao Zhang, Yasutaka Matsuo, and Hiromichi Ohta*, “Reliable operation in high-mobility indium oxide thin film transistors”, Small Methods 2400578 (2024). (August 3, 2024) (DOI: 10.1002/smtd.202400578) Press release
  4. Yuzhang Wu, Yusaku Magari*, Prashant Ghediya, Yuqiao Zhang, Yasutaka Matsuo, Hiromichi Ohta*, “High-mobility and High-reliability Coexistence in Zn-incorporated Amorphous In2O3-based Thin-Film Transistors”, Jpn. J. Appl. Phys. 63, 076504 (2024). (July 25, 2024) (DOI: 10.35848/1347-4065/ad5ee6)
  5. Zhiping Bian, Mitsuki Yoshimura, Ahrong Jeong, Haobo Li, Takashi Endo, Yasutaka Matsuo, Yusaku Magari, Hidekazu Tanaka, Hiromichi Ohta*, “Solid-State Electrochemical Thermal Switches with Large Thermal Conductivity Switching Widths”, Adv. Sci. 11, 2401331 (2024). (June 25, 2024) (DOI: 10.1002/advs.202401331) Press release
  6. Hao-Bo Li*, Zhiping Bian, Mitsuki Yoshimura, Kohei Shimoyama, Chengchao Zhong, Keiji Shimoda, Azusa N. Hattori, Kunihiko Yamauchi, Ikutaro Hamada, Hiromichi Ohta*, Hidekazu Tanaka*, “Wide-range thermal conductivity modulation based on protonated nickelate perovskite oxides”, Appl. Phys. Lett. 124, 191901 (2024). (May 8, 2024) (DOI: 10.1063/5.0201268)
  7. Lizhikun Gong, Ko Marunouchi, Akira Chikamatsu, Hiromichi Ohta, and Tsukasa Katayama*, “Large tensile-strained BaTiO3 films grown on lattice-mismatched La-doped BaSnO3 bottom electrode”, CrystEngComm 26, 2765 (2024). (April 24, 2024) (DOI: 10.1039/D4CE00197D)
  8. Ko Marunouchi, Lizhikun Gong, Hiromichi Ohta, and Tsukasa Katayama*, “High-concentration doping effects of aliovalent Al and Ga on ferroelectric properties of BaTiO3 Films”, Thin Solid Films 796, 140339 (2024). (April 16, 2024) (DOI: 10.1016/j.tsf.2024.140339)
  9. Yaoming Liu, Binjie Chen, Yosuke Hamasaki, Lizhikun Gong, Hiromichi Ohta, and Tsukasa Katayama*, “Magnetic Phase Transition-Induced Modulation of Ferroelectric Properties in Hexagonal RFeO3 (R = Tb and Ho)”, ACS Appl. Mater. Interfaces 16, 17832–17837 (2024). (April 1, 2024) (DOI: 10.1021/acsami.4c02475)
  10. Morito Namba, Hiroshi Takatsu, Hao-Bo Li, Kantaro Murayama, Ryo Terada, Qian Yang, Takahito Terashima, Hiromichi Ohta, and Hiroshi Kageyama*, “Pure Fluorine Intercalation into Brownmillerite Oxide Thin Films by using Ionic Liquid Gating”, Chem. Mater. 36, 2076-2084 (2024). (February 7, 2024) (DOI: 10.1021/acs.chemmater.3c03178)
  11. Binjie Chen*, Jinghuang Lin, Bin Feng, Yuichi Ikuhara, and Hiromichi Ohta*, “High-Mobility Rutile SnO2 Epitaxial Films Grown on (1-100) α-Al2O3”, J. Ceram. Soc. Jpn. 131, 640 (2023). (October 1, 2023) (DOI: 10.2109/jcersj2.23035)
  12. Kungwan Kang, Fumiaki Kato, Akitoshi Nakano, Ichiro Terasaki*, Takashi Endo, Yasutaka Matsuo, Hyoungjeen Jeen*, and Hiromichi Ohta*, “Fabrication and Thermoelectric Properties of Freestanding Ba1/3CoO2 Single Crystalline Films”, ACS Appl. Electron. Mater. 5, 5749-5754 (2023). (October 16, 2023) (DOI: 10.1021/acsaelm.3c01129Press release
  13. Rui Yu, Lizhikun Gong, Hiromichi Ohta, Tsukasa Katayama*, “Ferroelectricity, high permittivity, and tunability in millimeter-size crack-free Ba1–xSrxTiO3 flexible epitaxial sheets”, ACS Appl. Electron. Mater. 5, 5234–5239 (2023). (September 14, 2023) (DOI: 10.1021/acsaelm.3c00963)
  14. Mitsuki Yoshimura, Qian Yang, Zhiping Bian, and Hiromichi Ohta*, “Significant Reduction in the Switching Time of Solid-State Electrochemical Thermal Transistors”, ACS Appl. Electron. Mater. 5, 4233 (2023). (July 24, 2023) (DOI: 10.1021/acsaelm.3c00512)
  15. Zhiping Bian*, Qian Yang, Mitsuki Yoshimura, Hai Jun Cho, Joonhyuk Lee, Hyoungjeen Jeen, Takashi Endo, Yasutaka Matsuo, and Hiromichi Ohta*, “Solid-State Electrochemical Thermal Transistors with Strontium Cobaltite – Strontium Ferrite Solid Solutions as the Active Layers”, ACS Appl. Mater. Interfaces 15, 23512-23517 (2023). (May 3, 2023) (DOI:10.1021/acsami.3c03660)
  16. Lizhikun Gong, Rui Yu, Hiromichi Ohta, and Tsukasa Katayama*, “Synthesis and transparent conductivity of crack-free La:BaSnO3 epitaxial flexible sheet”, Dalton Trans 52, 6317 (2023) (April 17, 2023) (DOI: 10.1039/d3dt01097j)
  17. Binjie Chen*, Chuchu Yang, Bin Feng, Yuichi Ikuhara, and Hiromichi Ohta*, “Suppression of Strain Relaxation in VO2/TiO2 Multilayered Films”, ACS Appl. Electron. Mater. 5, 2433-2438 (2023). (April 5, 2023) (DOI: 10.1021/acsaelm.3c00246)
  18. Atsushi Tsurumaki-Fukuchi*, Takayoshi Katase, Hiromichi Ohta, Masashi Arita, and Yasuo Takahashi, “Direct Imaging of Ion Migration in Amorphous Oxide Electronic Synapses with Intrinsic Analog Switching Characteristics”, ACS Appl. Mater. Interfaces 15, 16842-16852 (2023). (March 23, 2023) (DOI: 10.1021/acsami.2c21568)
  19. Qian Yang, Hai Jun Cho, Zhiping Bian, Mitsuki Yoshimura, Joonhyuk Lee, Hyoungjeen Jeen, Jinghuang Lin, Jiake Wei, Bin Feng, Yuichi Ikuhara, and Hiromichi Ohta*, “Solid-State Electrochemical Thermal Transistors”, Adv. Funct. Mater. 33, 202214939 (2023). (February 21, 2023) (DOI: 10.1002/adfm.202214939Press release, Open access, Frontispiece
  20. Prashant Ghediya, Hui Yang, Takashi Fujimoto, Yuqiao Zhang, Yasutaka Matsuo, Yusaku Magari, and Hiromichi Ohta, “Improved Electron Transport Properties of Zn-rich In-Ga-Zn-O Thin Film Transistors”, J. Phys. Chem. C 127, 2622-2627 (2023). (January 25, 2023) (DOI: 10.1021/acs.jpcc.2c07442)
  21. Sheng-Ying Chou, Hiroshi Masai*, Masaya Otani, Hiromichi V. Miyagishi, Gentaro Sakamoto, Yusuke Yamada, Yusuke Kinoshita*, Hitoshi Tamiaki, Takayoshi Katase, Hiromichi Ohta, Tomoki Kondo, Akinobu Nakada, Ryu Abe, Takahisa Tanaka, Ken Uchida, and Jun Terao*, “Efficient electrocatalytic H2O2 evolution utilizing electron-conducting molecular wires spatially separated by rotaxane encapsulation”, Appl. Catal. B: Environmental (2023). (January 9, 2023) (DOI: 10.1016/j.apcatb.2023.122373)
  22. Jason Tam, Peter M. Brodersen, Hiromichi Ohta, and Uwe Erb, “Contamination of rare earth oxide surfaces stored in vacuum environment”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 659, 130829 (2023) (DOI: 10.1016/j.colsurfa.2022.130829)
  23. Lizhikun Gong, Mian Wei, Rui Yu, Hiromichi Ohta, and Tsukasa Katayama*, “Significant Suppression of Cracks in Freestanding Perovskite Oxide Flexible Sheets Using a Capping Oxide Layer”, ACS Nano 16, 21013-21019 (2022). (November 21, 2022) (DOI: 10.1021/acsnano.2c08649)
  24. Binjie Chen*, Kungwan Kang, Hyoungjeen Jeen, Yuqiao Zhang, Jinghuang Lin, Bin Feng, Yuichi Ikuhara, Sena Hoshino, Katsuyuki Matsunaga, and Hiromichi Ohta*, “Orthorhombic Distortion-induced Anatase-like Optoelectronic Properties of Rutile TiO2“, J. Appl. Phys. 132, 185301 (2022). (November 8, 2022) (DOI: 10.1063/5.0119725)
  25. Hui Yang*, Yuqiao Zhang, Yasutaka Matsuo, Yusaku Magari, and Hiromichi Ohta*, “Thermopower Modulation Analyses of High-mobility Transparent Amorphous Oxide Semiconductor Thin-Film Transistors”, ACS Appl. Electron. Mater. 4, 5081-5086 (2022). (September 29, 2022) (DOI: 10.1021/acsaelm.2c01210) Press release
  26. Binjie Chen, Hiromichi Ohta, and Tsukasa Katayama*, “Ferroelectric and magnetic properties of hexagonal ErFeO3 epitaxial films”, ACS Appl. Electron. Mater. 4, 4547–4552 (2022). (August 23, 2022) (DOI: 10.1021/acsaelm.2c00767)
  27. Xi Zhang#, Yuqiao Zhang#*, Liao Wu, Akihiro Tsuruta, Masashi Mikami, Hai Jun Cho, and Hiromichi Ohta*, “Ba1/3CoO2: A Thermoelectric Oxide Showing a Reliable ZT of ∼0.55 at 600 °C in Air”, ACS Appl. Mater. Interfaces 14, 33355-33360 (2022). (July 12, 2022) (DOI: 10.1021/acsami.2c08555) Press release
  28. Yuqiao Zhang*, Hai Jun Cho, Feng Jiang, Chengliang Xia, Yue Chen, Weishu Liu*, and Hiromichi Ohta*, “Modulation of Electrical and Thermal Transports through Lattice Distortion in BaTi1–xNbxO3 Solid Solutions”, Nanotechnology in press
  29. Michihiko Yamanouchi, Yasufumi Araki, Takaki Sakai, Tetsuya Uemura, Hiromichi Ohta, and Jun’ichi Ieda, “Observation of topological Hall torque exerted on a domain wall in the ferromagnetic oxide SrRuO3“, Science Adv. 8, eabl6192 (2022). (15 April 2022) (DOI: 10.1126/sciadv.abl619)
  30. Binjie Chen, Tetsuya Hasegawa, Hiromichi Ohta, and Tsukasa Katayama, “Antiferroelectric-to-ferroelectric phase transition in hexagonal rare-earth iron oxides”, J. Mater. Chem. C 10, 5621-5626 (2022). (March 4th, 2022) (DOI: 10.1039/D1TC05944K)
  31. Youjung Kim, Seonghyeon Kim, Hyeongmin Cho, Young Mo Kim, Hiromichi Ohta, and Kookrin Char*, “Transport properties of LaInO3/BaSnO3 interface analyzed by Poisson-Schrödinger equation”, Phys. Rev. Applied 17, 014031 (2022). (January 25, 2022) (DOI: 10.1103/PhysRevApplied.17.014031)
  32. Hai Jun Cho*, Yuzhang Wu, Jiajun Qi, Yuna Kim, and Hiromichi Ohta, Osamu Matsuda*, “Specular acoustic vibrational wave transmissions with the presence of phononic bandgaps”, J. Phys. Soc. Japan 91, 014601 (2022). (December 3, 2021) (DOI: 10.7566/JPSJ.91.014601)
  33. Hiroaki Nakade, Eita Tochigi, Bin Feng, Ryo, Ishikawa, Hiromichi Ohta, Naoya Shibata, Yuichi Ikuhara, “Effect of annealing on grain growth and Y segregation behavior in tetragonal ZrO2 thin film”, J. Am. Ceram. Soc. 105, 2300-2308 (2022). (November 11, 2021) (DOI: 10.1111/jace.18217)
  34. Xi Zhang*, Gowoon Kim, Qian Yang, Jiake Wei, Bin Feng, Yuichi Ikuhara, and Hiromichi Ohta*, “Solid-State Electrochemical Switch of Superconductor-Metal-Insulators”, ACS Appl. Mater. Interfaces 13, 54204-54209 (2021). (November 4, 2021) (DOI: 10.1021/acsami.1c17014) Press release
  35. Shun-ichiro Ito, Kaito Kanahashi, Hiromichi Ohta, Hiroshi Ito, Taishi Takenobu* and Hisaaki Tanaka*, “Structure and thermoelectric properties in electrochemically doped polythiophene thin films: effect of side chain density”, Appl. Phys. Lett. 119, 183304 (2021). (November 2, 2021) (DOI: 10.1063/5.0067769)
  36. Beibei Qiao, Yixiao Jianga, Tingting Yaoa, Ang Tao, Xuexi Yan, Chunyang Gao, Xiang Li, Hiromichi Ohta, Chunlin Chen*, Xiu-Liang Ma, Hengqiang Ye, “Microstructure and electronic properties of La2Ti2O7 thin films on SrTiO3 substrates”, Appl. Surf. Sci. (2021). (October 19, 2021) (DOI: 10.1016/j.apsusc.2021.151599)
  37. Takayoshi Katase*, Xinyi He, Terumasa Tadano, Jan M. Tomczak, Takaki Onozato, Keisuke Ide, Bin Feng, Tetsuya Tohei, Hidenori Hiramatsu, Hiromichi Ohta, Yuichi Ikuhara, Hideo Hosono, and Toshio Kamiya*, “Breaking of thermopower – conductivity trade-off in LaTiO3 film around Mott insulator to metal transition”, Adv. Sci. 2102097 (2021). (October 21, 2021) (DOI: 10.1021/advs.202102097)
  38. Binjie Chen*, Gowoon Kim, Hai Jun Cho, and Hiromichi Ohta*, “Room Temperature Insulator-to-Metal Transition of VO2 / TiO2 Epitaxial Bilayer Films Grown on M-plane Sapphire Substrates”, Adv. Electron. Mater. 2100687 (2021). (October 19, 2021) (DOI: 10.1002/aelm.202100687)
  39. Joonhyuk Lee, Younghak Kim, Jinhyung Cho, Hiromichi Ohta*, and Hyoungjeen Jeen*, “Overlayer deposition-induced control of oxide ion concentration in SrFe0.5Co0.5O2.5 oxygen sponges”, RSC Adv. 11, 32210 (2021). (September 29, 2021) (DOI: 10.1039/D1RA06378B)
  40. Gowoon Kim*, Hai Jun Cho, and Hiromichi Ohta*, “Reversible Redox Control of Optoelectronic Properties of Hexagonal Tungsten Oxide Epitaxial Films Grown on YSZ Solid Electrolyte”, ACS Appl. Electron. Mater. XX, XXXX-XXXX (2021). (August 6, 2021) (DOI: 10.1021/acsaelm.1c00522)
  41. Shun Sasano, Ryo Ishikawa*, Gabriel Sánchez-Santolino, Hiromichi Ohta, Naoya Shibata, and Yuichi Ikuhara*, “Atomistic Origin of Li-Ion Conductivity Reduction at (Li3xLa2/3−x)TiO3 Grain Boundary”, Nano Lett. 21, 6282–6288 (2021). (July 19, 2021) (DOI:10.1021/acs.nanolett.1c02174)
  42. Qian Yang*, Joonhyuk Lee, Hyoungjeen Jeen, Hai Jun Cho, and Hiromichi Ohta*, “Solid-State Electrochemical Protonation of SrCoO2.5 into HxSrCoO2.5 (x = 1, 1.5 and 2)”, ACS Appl. Electron. Mater. 3, 3296–3300 (2021). (July 14, 2021) (DOI: 10.1021/acsaelm.1c00505)
  43. Ang Tao, Tingting Yao, Yixiao Jiang, Lixin Yang, Chunlin Chen*, Xuexi Yan, Hiromichi Ohta, Yuichi Ikuhara, Hengqiang Ye, and Xiu-Liang Ma*, “Single-dislocation Schottky diodes”, Nano Lett. 21, 5586–5592 (2021). (June 17, 2021) (DOI: 10.1021/acs.nanolett.1c01081)
  44. Qian Yang*, Hai Jun Cho, Hyoungjeen Jeen, and Hiromichi Ohta*, “Solid-State Electrochemical Redox Control of the Optoelectronic Properties for SrFeOx Thin Films”, J. Appl. Phys. 129, 215303 (2021). (June 2, 2021) (DOI: 10.1063/5.0053939)
  45. Jiajun Qi, Yuzhang Wu, Hai Jun Cho*, Yuna Kim*, Hiromichi Ohta, and Nobuyuki Tomaoki, “Pressure-tunable thermal conductivity observed from bisamide functionalized diacetylene crystals”, J. Mater. Sci. 56, 15481-15490 (2021) (June 22, 2021) (DOI: 10.1007/s10853-021-06192-7)
  46. Shuji Kawasaki, Akitoshi Nakano, Hiroki Taniguchi, Hai Jun Cho, Hiromichi Ohta, Fumihiko Nakamura, and Ichiro Terasaki*, “Thermal diffusivity of the Mott insulator Ca2RuO4 in a non-equilibrium steady state”, J. Phys. Soc. Jpn. 90, 063601 (2021). (May 19, 2021) (DOI: 10.7566/JPSJ.90.063601)
  47. Yuqiao Zhang*, Hai Jun Cho, Kenyu Sugo, Masashi Mikami, Sungmin Woo, Myung-Chul Jung, Yao-Hua Zhuang, Bin Feng, Yu-Miin Sheu*, Woosuck Shin, Woo Seok Choi, Myung Joon Han, Yuichi Ikuhara, and Hiromichi Ohta*, “Low thermal conductivity of SrTiO3−LaTiO3 and SrTiO3-SrNbO3 thermoelectric oxide solid solutions”, J. Am. Ceram. Soc. 104, 4075-4085 (2021). (March 26, 2021) (DOI: 10.1111/jace.17797)
  48. Hai Jun Cho*, Yuzhang Wu, Yuqiao Zhang, Bin Feng, Masashi Mikami, Woosuck Shin, Yuichi Ikuhara, Yu-Miin Sheu, Keiji Saito, and Hiromichi Ohta*, “Anomalously Low Heat Conduction in Single-Crystal Superlattice Ceramics Lower than Randomly Oriented Polycrystals”, Adv. Mater. Interfaces 8, 2001932 (2021). (February 15, 2021) (DOI: 10.1002/admi.202001932) Press release Inside Back Cover
  49. Gowoon Kim*, Bin Feng, Sangkyun Ryu, Hai Jun Cho, Hyoungjeen Jeen, Yuichi Ikuhara, and Hiromichi Ohta*, “Anisotropic Electrical Conductivity of Oxygen-Deficient Tungsten Oxide Films with Epitaxially Stabilized 1D Atomic Defect Tunnels”, ACS Appl. Mater. Interfaces 13, 6864-6869 (2021). (January 28, 2021) (DOI: 10.1021/acsami.0c21240)
  50. Doudou Liang*, Bin-jie Chen, Bin Feng, Yuichi Ikuhara, Hai Jun Cho, and Hiromichi Ohta*, “Optimization of Two-Dimensional Channel Thickness in Nanometer-Thick SnO2-Based Top-Gated Thin-Film Transistors using Electric Field Thermopower Modulation: Implications for Flat-Panel Displays”, ACS Appl. Nano Mater. 3, 12427-12432 (2020). (December 15, 2020) (DOI: 10.1021/acsanm.0c03069)
  51. Mian Wei*, Hai Jun Cho, and Hiromichi Ohta*, “Tuning of the optoelectronic properties for transparent oxide semiconductor ASnO3 by modulating the size of A-ions”, ACS Appl. Electron. Mater. 2, 3971-3976 (2020). (December 8, 2020) (DOI: 10.1021/acsaelm.0c00806)
  52. Keisuke Nakamura, Tomoya Oshikiri, Kousei Ueno, Hiromichi Ohta, and Hiroaki Misawa*, “Hot-carrier Separation Induced by the Electric Field of a p-n Junction Between Titanium Dioxide and Nickel Oxide”, Chem. Lett. (2020). (December 2, 2020) (DOI: 10.1246/cl.200790)
  53. Tianshu Zhai, Rongbin Wang, Takayoshi Katase, Frances Quigley, Hiromichi Ohta, Patrick Amsalem, Norbert Koch, and Steffen Duhm*, “Substrate-independent energy-level pinning of an organic semiconductor provides versatile hole-injection electrodes”, ACS Appl. Electron. Mater. 2, 3994-4001 (2020). (December 8, 2020) (DOI: 10.1021/acsaelm.0c00823)
  54. Kaito Kanahashi, Yong-Young Noh, Won-Tae Park, Hoichang Yang, Hiromichi Ohta, Hisaaki Tanaka,* and Taishi Takenobu*, “Charge and thermoelectric transport mechanism in donor-acceptor copolymer films”, Phys. Rev. Res. 2, 043330 (2020). (December 7, 2020) (DOI: 10.1103/PhysRevResearch.2.043330)
  55. Yugo Takashima, Yu-qiao Zhang*, Jiake Wei, Bin Feng, Yuichi Ikuhara, Hai Jun Cho, and Hiromichi Ohta*, “Layered cobalt oxide epitaxial films exhibiting thermoelectric ZT = 0.11 at room temperature”, J. Mater. Chem. A 9, 274 – 280 (2021). (October 13, 2020) (DOI: 10.1039/D0TA07565EPress release Inside Back Cover
  56. Hiroaki Nakade, Eita Tochigi, Bin Feng, Yukio Nezu, Hiromichi Ohta, Naoya Shibata, and Yuichi Ikuhara, “Fabrication and characterization of tetragonal yttria-stabilized zirconia single-crystalline thin film”, J. Am. Ceram. Soc. 104, 1198-1203 (2021). (October 18, 2020) (DOI: 10.1111/jace.17534)
  57. Dou-dou Liang*#, Binjie Chen#, Hai Jun Cho, and Hiromichi Ohta*, “Thickness Optimization toward High-Performance Bottom-Gated Transparent Tin Dioxide Thin-Film Transistor”, ACS Appl. Electron. Mater. 2, 3454-3458 (2020). (October 9, 2020) (DOI:10.1021/acsaelm.0c00711)
  58. Ichiro Terasaki, Isuzu Sano, Kosuke Toda, Shuji Kawasaki, Akitoshi Nakano, Hiroki Taniguchi, Hai Jun Cho, Hiromichi Ohta, and Fumihiko Nakamura, “Non-equilibrium steady states in the Mott insulator Ca2RuO4“, J. Phys. Soc. Jpn. 89, 093707 (2020). (August 27th, 2020) (DOI: 10.7566/JPSJ.89.093707)
  59. Fabian Krahl, Yuzhang Wu, Hai Jun Cho*, Maarit Karppinen, and Hiromichi Ohta*, “Spontaneous generation of carrier electrons at the interface between polycrystalline ZnO and amorphous InGaZnO4”, Adv. Electron. Mater. 6, 2000404 (2020). (September 11, 2020) (DOI: 10.1002/aelm.202000404)
  60. Gowoon Kim*, Bin Feng, Yu-Miin Sheu, Hai Jun Cho, Yuichi Ikuhara, Hiromichi Ohta*, “Coexistence of high electron conduction and low heat conduction in tungsten oxide epitaxial films with 1D atomic defect tunnels”, ACS Appl. Electron. Mater. 2, 2507-2513 (2020). (July 28, 2020) (DOI:10.1021/acsaelm.0c00428)
  61. Qian Yang, Joonhyuk Lee, Bin Feng, Yuichi Ikuhara, Gowoon Kim, Hai Jun Cho, Hyoungjeen Jeen*, and Hiromichi Ohta*, “Unusually large thermopower change from +330 μV K-1 to -185 μV K-1 of brownmillerite SrCoO2.5“, ACS Appl. Electron. Matter. 2, 2250-2256 (2020). (July 6, 2020) (DOI: 10.1021/acsaelm.0c00427)
  62. Kohei Fujiwara*, Miho Kitamura, Daisuke Shiga, Yasuhiro Niwa, Koji Horiba, Tsutomu Nojima, Hiromichi Ohta, Hiroshi Kumigashira, and Atsushi Tsukazaki, “Insulator-to-Metal Transition of Cr2O3 Thin Films via Isovalent Ru3+ Substitution”, Chem. Mater. 32, 5272 (2020). (May 27, 2020) (doi: 10.1021/acs.chemmater.0c01497)
  63. Mian Wei#, Lizhikun Gong#, Dou-dou Liang#, Hai Jun Cho*, and Hiromichi Ohta*, “Fabrication and Operating Mechanism of Deep-UV Transparent Semiconducting SrSnO3-based Thin Film Transistor”, Adv. Electron. Mater. 62000100 (2020). (June 15, 2020) (doi: 10.1002/aelm.202000100) Press release
  64. M. Timpel, M. V. Nardi, B. Wegner, G. Ligorio, L. Pasquali, M. Pätzel, S. Hecht, H. Ohta, and N. Koch, “Oligothiophene-based Phosphonates for Interfacial Engineering of Ultraflat Transparent Conductive Oxides”, Adv. Mater. Interfaces 71902114 (2020). (May 4, 2020) (doi:10.1002/admi.201902114)
  65. Dou-dou Liang*, Yu-qiao Zhang, Hai Jun Cho, and Hiromichi Ohta*, “Electric field thermopower modulation analyses of the operation mechanism of transparent amorphous SnO2 thin-film transistor”, Appl. Phys. Lett. 116, 143503 (2020). (April 8, 2020) (DOI: 10.1063/5.0003153)
  66. Hai Jun Cho,* Koichi Sato, Mian Wei, Gowoon Kim, and Hiromichi Ohta*, “Effect of lattice distortions on the electron and thermal transport properties of transparent oxide semiconductor Ba1-xSrxSnO3 solid solution films”, J. Appl. Phys. 127, 115701 (2020). (March 17, 2020) (DOI:  10.1063/5.0002172Editor’s pick
  67. Tomoya Oshikiri, Hiroki Sawayanagi, Keisuke Nakamura, Kosei Ueno, Takayoshi Katase, Hiromichi Ohta, and Hiroaki Misawa*, “Arbitrary control of the diffusion potential between a plasmonic metal and a semiconductor by an angstrom-thick interface dipole layer”, J. Chem. Phys. 152, 934705 (2020). (January 17th, 2020) (DOI: 10.1063/1.5134900)
  68. Mian Wei, Anup Sanchela, Bin Feng, Yuichi Ikuhara, Hai Jun Cho*, and Hiromichi Ohta*, “High electrical conducting deep-ultraviolet-transparent oxide semiconductor La-doped SrSnO3 exceeding ~3000 S cm−1”, Appl. Phys. Lett. 116, 022103 (2020). (January 13th, 2020) (DOI: 10.1063/1.5128410)
  69. Tingting Yao, Yixiao Jiang, Chunlin Chen*, Xuexi Yan, Ang Tao, Lixin Yang, Chuihong Li, Kenyu Sugo, Hiromichi Ohta, Hengqiang Ye, Yuichi Ikuhara, and Xiuliang Ma*, “Ferroelectric oxide thin film with an out-of-plane electrical conductivity”, Nano Lett. 20, 1047 (2020). (December 26th 2019) (DOI: 10.1021/acs.nanolett.9b04210)
  70. Michihiko Yamanouchi*, Tatsuro Oyamada, and Hiromichi Ohta, “Current-induced effective magnetic field in La0.67Sr0.33MnO3/LaAlO3/SrTiO3 structures”, AIP Adv. 10, 015129 (2020). (January 14th, 2020) (DOI: 10.1063/1.5129283)
  71. Takaki Onozato*, Hai Jun Cho, and Hiromichi Ohta*, “An oxide-based flexible electrochromic transistor under mechanical stress”, Jpn. J. Appl. Phys. 59, 024002 (2020). (DOI: 10.7567/1347-4065/ab6563)
  72. Hai Jun Cho*, Yugo Takashima, Yukio Nezu, Takaki Onazato, and Hiromichi Ohta*, “Anisotropic Heat Conduction in Ion Substituted Layered Cobalt Oxides”, Adv. Mater. Interfaces  7, 1901816 (2019). (January 1st, 2020) (DOI: 10.1002/admi.201901816)
  73. Seung Gyo Jeong, Taewon Min, Sungmin Woo, Jiwoong Kim, Yu-Qiao Zhang, Seong Won Cho, Jaeseok Son, Young-Min Kim, Jung Hoon Han, Sungkyun Park, Hu Young Jeong, Hiromichi Ohta, Suyoun Lee, Tae Won Noh, Jaekwang Lee* and Woo Seok Choi*, “Phase Instability amid Dimensional Crossover in Artificial Oxide Crystal”, Phys. Rev. Lett. 124, 026401 (2020). (January 13th, 2020)  (DOI: 10.1103/PhysRevLett.124.026401)
  74. Hisaaki Tanaka,* Kaito Kanahashi, Naoya Takekoshi, Hiroaki Mada, Hiroshi Ito,* Yukihiro Shimoi, Hiromichi Ohta, Taishi Takenobu*, “Thermoelectric properties of a semicrystalline polymer doped beyond the insulator-to-metal transition by electrolyte gating”, Science Adv. 6, eaay8065 (2020). (February 15th, 2020) (DOI: 10.1126/sciadv.aay8065)
  75. Kaito Kanahashi, Masatou Ishihara, Masataka Hasegawa, Hiromichi Ohta, and Taishi Takenobu*, “Giant power factors in p- and n-type large-area graphene films on a flexible plastic substrate”, npj 2D Mater. Appl. 3, 44 (2019). (November 8th, 2019) (DOI: 10.1038/s41699-019-0128-0).
  76. Qian Yang, Hai Jun Cho, Hyoungjeen Jeen*, and Hiromichi Ohta*, “Macroscopic visualization of fast electrochemical reaction of SrCoOx oxygen sponge”, Adv. Mater. Interfaces 6, 1901260 (2019). (DOI: 10.1002/admi.201901260) Outside Back Cover
  77. Hai Jun Cho*, Bin Feng, Takaki Onozato, Mian Wei, Anup Sanchela, Yuichi Ikuhara, and Hiromichi Ohta*, “Investigation of electrical and thermal transport property reductions in La-doped BaSnO3 films”, Phys. Rev. Materials 3, 094601 (2019). (September 3rd, 2019) (DOI: 10.1103/PhysRevMaterials.3.094601) Editor’s Suggestion
  78. Yuqiao Zhang*, Kenyu Sugo, Hai Jun Cho, and Hiromichi Ohta*, “Thermoelectric Phase Diagram of the SrTiO3 – LaTiO3 Solid-Solution System through a Metal to Mott Insulator Transition”, J. Appl. Phys. 126, 075104 (2019). (August 15th, 2019) (DOI: 10.1063/1.5100993)
  79. Gowoon Kim, Hai Jun Cho*, Yu-Miin Sheu, and Hiromichi Ohta*, “Electrical, optical and thermal transport properties of oxygen deficient amorphous WOx (2.5 < x < 3) films”, The Journal of Physical Chemistry C 123, 15419 (2019). (DOI: 10.1021/acs.jpcc.9b02448Cover
  80. Kyeong Tae Kang, Chang Jae Roh, Jinyoung Lim, Taewon Min, Jun Han Lee, Kyoungjun Lee, Tae Yoon Lee, Seunghun Kang, Daehee Seol, Jiwoong Kim, Hiromichi Ohta, Amit Khare, Sungkyun Park, Yunseok Kim, Seung Chul Chae, Yoon Seok Oh, Jaekwang Lee, Jaejun Yu, Jong Seok Lee, and Woo Seok Choi*, “Room-temperature ferroelectric ferromagnet in 1D tetrahedral chain network”, Adv. Mater. 31, 1808104 (2019). (DOI: 10.1002/adma.201808104Frontispiece
  81. Anup Sanchela*, Mian Wei, Joonhyuk Lee, Gowoon Kim, Hyoungjeen Jeen, Bin Feng, Yuichi Ikuhara, Hai Jun Cho, Hiromichi Ohta*, “Buffer layer-less fabrication of high-mobility transparent oxide semiconductor, La-doped BaSnO3”, Journal of Materials Chemistry C 7, 5797-5802 (2019). (DOI: 10.1039/C8TC06177G)
  82. Hai Jun Cho*, Gowoon Kim, Takaki Onozato, Hyoungjeen Jeen, and Hiromichi Ohta, “Thermal conductivity tensor of NbO2“, International Journal of Heat and Mass Transfer 137, 263 (2019). (DOI: 10.1016/j.ijheatmasstransfer.2019.03.135)
  83. Takaki Onozato, Yukio Nezu, Hai Jun Cho, and Hiromichi Ohta*, “Fast operation of a WO3-based solid-state electrochromic transistor”, AIP Advances 9, 025122 (2019). (DOI: 10.1063/1.5089604)
  84. Michihiko Yamanouchi*, Tatsuro Oyamada, Koichi Sato, Hiromichi Ohta, and Jun’ichi Ieda, “Current-induced modulation of coercive field in the ferromagnetic oxide SrRuO3“, IEEE Transactions on Magnetics 55, 1400604 (2019).(DOI: 10.1109/TMAG.2019.2894897) (12 February 2019)
  85. Anup V. Sanchela*, Mian Wei, Hai Jun Cho, and Hiromichi Ohta*, “Thermopower modulation clarification of the operating mechanism in wide bandgap BaSnO3−SrSnO3 solid-solution based thin film transistors”, Small 15, 1805394 (2019).(DOI: 10.1002/smll.201805394) (30 January 2019)
  86. Michihiko Yamanouchi*, Tatsuro Oyamada, and Hiromichi Ohta, “Peculiar magnetotransport properties in La0.67Sr0.33MnO3/LaAlO3/SrTiO3“, AIP Advances 9, 035129 (2019). (DOI: 10.1063/1.5079898)
  87. Kaito Kanahashi, Naoki Tanaka, Yoshiaki Shoji, Mina Maruyama, Il Jeon, Kenji Kawahara, Masatou Ishihara, Masataka Hasegawa, Hiromichi Ohta, Hiroki Ago, Yutaka Matsuo, Susumu Okada, Takanori Fukushima, and Taishi Takenobu*, “Formation of environmentally stable hole-doped graphene films: Instantaneous and high-density carrier doping by a boron-based oxidant”, npj 2D Materials and Applications 3, 7 (2019).
  88. Gowoon Kim, Yu-Qiao Zhang, Taewon Min, Hoyoung Suh, Jae Hyuck Jang, Hyeonjun Kong, Joonhyuk Lee, Jaekwang Lee, Tae-Yeol Jeon, Inwon Lee, Jinhyung Cho, Hiromichi Ohta* and Hyoungjeen Jeen*, “Extremely light carrier effective mass in a distorted simple metal oxide”, Adv. Electron. Mater. 5, 1800504 (2019). (December 7, 2018) (DOI: 10.1002/aelm.201800504)
  89. Hai Jun Cho*, Takaki Onozato, Mian Wei, Anup Sanchela, and Hiromichi Ohta*, “Effects of vacuum annealing on the electron mobility of epitaxial La-doped BaSnO3 films”, APL Mater.  7, 022507 (2019) (December 12, 2018) (DOI: 10.1063/1.5054154)
  90. Rongbin Wang, Takayoshi Katase, Ke-Ke Fu, Tianshu Zhai, Jiacheng Yang, Qiankun Wang, Hiromichi Ohta, Norbert Koch,* and Steffen Duhm*, “Oxygen vacancies allow tuning the work function of vanadium dioxide”, Adv. Mater. Interfaces 5, 1801033 (2018). (October 3, 2018) (DOI:10.1002/admi.201801033)
  91. Jason Tam, Bin Feng, Yuichi Ikuhara, Hiromichi Ohta*, Uwe Erb*, “Crystallographic orientation – surface energy – wetting property relationships of rare earth oxides”, J. Mater. Chem. A 6, 18384-18388 (2018). (DOI: 10.1039/c8ta04938f)
  92. Anup V. Sanchela*, Mian Wei, Haruki Zensyo, Bin Feng, Joonhyuk Lee, Gowoon Kim, Hyoungjeen Jeen, Yuichi Ikuhara, and Hiromichi Ohta*, “Large thickness dependence of the carrier mobility in a transparent oxide semiconductor, La-doped BaSnO3“, Appl. Phys. Lett. 112, 232102 (2018). (DOI: 10.1063/1.5033326)
  93. Yuqiao Zhang, Bin Feng, Hiroyuki Hayashi, Cheng-Ping Chang, Yu-Miin Sheu, Isao Tanaka, Yuichi Ikuhara, and Hiromichi Ohta*, “Double thermoelectric power factor of a 2D electron system”, Nature Communications 9, 2224 (2018). (DOI: 10.1038/s41467-018-04660-4)
  94. Keisuke Nakamura, Tomoya Oshikiri, Kosei Ueno, Takayoshi Katase, Hiromichi Ohta, and Hiroaki Misawa, “Plasmon-Assisted Polarity Switching of a Photoelectric Conversion Device by UV and Visible Light Irradiation”, J. Phys. Chem. C 122, 14064-14071  (2018). (DOI: 10.1021/acs.jpcc.8b01198)
  95. Ke-Ke Fu, Rong-Bin Wang, Takayoshi Katase, Hiromichi Ohta, Norbert Koch, and Steffen Duhm*, “Stoichiometric and oxygen deficient VO2 as versatile hole injection electrode for organic semiconductors”, ACS Appl. Mater. Interfaces 10, 10552-10559 (2018). (March 19, 2018) (DOI: 10.1021/acsami.8b00026)
  96. Hirofumi Matsuoka, Kaito Kanahashi, Naoki Tanaka, Yoshiaki Shoji, Lain-Jong Li, Jiang Pu, Hiroshi Ito, Hiromichi Ohta, Takanori Fukushima, and Taishi Takenobu, “Chemical hole doping into large-area transition metal dichalcogenide monolayers using boron-based oxidant”, Jpn. J. Appl. Phys. 57, 02CCB15 (2018). (January 18, 2018) (DOI: 10.7567/JJAP.57.02CB15)
  97. Amit Khare, Jaekwang Lee, Jaeseoung Park, Gi-Yeop Kim, Si-Young Choi, Takayoshi Katase, Seulki Roh, Tae Sup Yoo, Jungseek Hwang, Hiromichi Ohta, Junwoo Son, and Woo Seok Choi, “Directing oxygen vacancy channels in SrFeO2.5 epitaxial thin films”, ACS Appl. Mater. Interfaces 10, 4831-4837 (2018). (January 12, 2018) (DOI: 10.1021/acsami.7b17377)
  98. Hiromichi Ohta*, Sung Wng Kim, Shota Kaneki, Atsushi Yamamoto, and Tamotsu Hashizume*, “High thermoelectric power factor of high-mobility two-dimensional electron gas”, Adv. Sci. 4, 1700696 (2017). (DOI: 10.1002/advs.201700696)
  99. Yukio Nezu, Yu-Qiao Zhang, Chunlin Chen, Yuichi Ikuhara, and Hiromichi Ohta, “Solid-phase epitaxial film growth and optical properties of a ferroelectric oxide, Sr2Nb2O7“, J. Appl. Phys.122, 135305 (2017). (DOI: 10.1063/1.4997813)
  100. Takayoshi Katase, Yuki Suzuki , Hiromichi Ohta, “Highly conducting leakage-free electrolyte for SrCoOx-based non-volatile memory device”, J. Appl. Phys. 122, 135303 (2017). (DOI: 10.1063/1.5005520)
  101. Jae-Yeol Hwang, Young-Min Kim, Kyu Hyoung Lee, Hiromichi Ohta, Sung Wng Kim, “Te monolayer-driven spontaneous van der Waals epitaxy of two-dimensional pnictogen chalcogenide film on sapphire”, Nano Lett. 17, 6140 (2017) (DOI: 10.1021/acs.nanolett.7b02737)
  102. Shao-Pin Chiu, Michihiko Yamanouchi, Tatsuro Oyamada, Hiromichi Ohta, and Juhn-Jong Lin, “Gate tunable spin-orbit coupling and weak antilocalization effect in an epitaxial La2/3Sr1/3MnO3 thin film”, Phys. Rev. B 96, 085143 (2017). (DOI: 10.1103/PhysRevB.96.085143)
  103. A.V. Sanchela, T. Onozato, B. Feng, Y. Ikuhara, and H. Ohta, “Thermopower modulation clarification of the intrinsic effective mass in a transparent oxide semiconductor, BaSnO3“, Phys. Rev. Materials 1, 034603 (2017). (DOI: 10.1103/PhysRevMaterials.1.034603)
  104. Amit Khare, Dongwon Shin, Taesup Yoo, Minu Kim, Tae Dong Kang, Jaekwang Lee, Seulki Roh, Jungseek Hwang, Sung Wng Kim, Tae Won Noh, Hiromichi Ohta, and Woo Seok Choi, “Topotactic Metal-Insulator Transition in Epitaxial SrFeOx Thin Films”, Adv. Mater. 29, 1606566 (2017).
  105. Yuqiao Zhang, Bin Feng, Hiroyuki Hayashi, Tetsuya Tohei, Isao Tanaka, Yuichi Ikuhara, and Hiromichi Ohta, “Thermoelectric phase diagram of the SrTiO3-SrNbO3 solid solution system”, J. Appl. Phys. 121, 185102-1-7(2017). (doi: 10.10631/1.4983359)
  106. Takayoshi Katase, Kenji Endo, and Hiromichi Ohta, “Infrared-transmittance tunable metal-insulator conversion device with thin-film-transistor-type structure on a glass substrate”, APL Mater. 5, 056105 (2017). (doi: 10.1061/1.4983276)
  107. Shota Katayama, Takayoshi Katase, Tetsuya Tohei, Bin Feng, Yuichi Ikuhara, and Hiromichi Ohta, “Reactive solid-phase epitaxy and electrical conductivity of layered sodium manganese oxide films”, Cryst. Growth Des. 17, 1849-1853 (2017).(doi: 10.1021/acs.cgd.6b01810)
  108. Kazuma Funahashi, Naoki Tanaka, Yoshiaki Shoji, Naoki Imazu, Ko Nakayama, Kaito Kanahashi, Hiroyuki Shirae, Suguru Noda, Hiromichi Ohta, Takanori Fukushima, and Taishi Takenobu, “Remarkably air- and moisture-stable hole-doped carbon nanotube films by a boron-based oxidant”, Appl. Phys. Express 10, 035101 (2017). (DOI:10.7567/APEX.10.035101).
  109. Eun Sung Kim, Jae-Yeol Hwang, Kyu Hyoung Lee, Hiromichi Ohta, Young Hee Lee, and Sung Wng Kim, “Graphene Substrate for Van der Waals Epitaxy of Layer Structured Bismuth Antimony Telluride Thermoelectric Film”, Adv. Mater. 29, 1604899 (2017) (DOI: 10.1002/adma.201604899).
  110. Ning Li, Takayoshi Katase, Yanbei Zhu, Takao Matsumoto, Tomonari Umemura, Yuichi Ikuhara, and Hiromichi Ohta, “Solid-liquid phase epitaxial growth of Li4Ti5O12 thin film”, Appl. Phys. Express 9, 125501 (2016).(doi:10.7567/APEX.9.125501)
  111. J. Pu, K. Kanahashi, N. T. Cuong, C-H. Chen, L-J. Li, S. Okada, H. Ohta, and T. Takenobu, “Enhanced thermoelectric power in two-dimensional transition metal dichalcogenide monolayers”, Phys. Rev. B 94, 014312 (2016).
  112. T. Katase, T. Onozato, M. Hirono, T. Mizuno, and H. Ohta, “A transparent electrochromic metal-insulator switching device with three-terminal transistor geometry”, Sci. Rep. 6, 25819 (2016).
  113. K. Yokoyama, S. Yokoyama, Y. Sato, K. Hirano, S. Hashiguchi, K. Motomiya, H. Ohta, H. Takahashi, K. Tohji, and Y. Sato, “Efficiency and long-term durability of nitrogen-doped single-walled carbon nanotube electrocatalyst synthesized by defluorination-assisted nanotube-substitution for oxygen reduction reaction”, J. Mater. Chem. A 4, 9184 (2016).(doi:10.1039/C6TA02722A )
  114. T. Onozato, T. Katase, A. Yamamoto, S. Katayama, K. Matsushima, N. Itagaki, H. Yoshida, and H. Ohta, “Optoelectronic properties of valence-state-controlled amorphous niobium oxide”, J. Phys. Condens. Mater. 28, 255001 (2016).(doi:10.1088/0953-8984/28/25/255001)
  115. T. Katase, Y. Suzuki, and H. Ohta, “Reversibly switchable electromagnetic device with leakage-free electrolyte”, Adv. Electron. Mater. 2, 1600044 (2016).(doi:10.1002/aelm.201600044)
  116. B. Feng, I. Sugiyama, H. Hojo, H. Ohta, N. Shibata, and Y. Ikuhara, “Atomic structures and oxygen dynamics of CeO2 grain boundaries”, Sci. Rep. 6, 20288 (2016).(doi:10.1038/srep20288)
  117. T. Katase, H. Takahashi, T. Tohei, Y. Suzuki, M. Yamanouchi, Y. Ikuhara, I. Terasaki, and H. Ohta, “Solid-phase epitaxial growth of A-site-ordered perovskite Sr4-xErxCo4O12-d“, Adv. Electron. Mater. 1, 201500199 (2015). (DOI: 10.1002/aelm.201500199)
  118. K. Yokoyama, Y. Sato, K. Hirano, H. Ohta, M. Kenichi, K. Tohji, Y. Sato, “Defluorination-assisted nanotube-substitution reaction with ammonia gas for synthesis of nitrogen-doped single-walled carbon nanotubes”, Carbon 94, 1052-1060 (2015).
  119. T. Katase, K. Endo, and H. Ohta, “Thermopower analysis of metal-insulator transition temperature modulations in vanadium dioxide thin films with lattice distortion”, Phys. Rev. B 92, 035302 (2015).(DOI: 10.1103/PhysRevB.92.035302)
  120. T. Katase, K. Endo, T. Tohei, Y. Ikuhara, and H. Ohta, “Room-temperature-protonation-driven on-demand metal-insulator conversion of a transition metal oxide”, Adv. Electron. Mater. (2015).(DOI: 10.1002/aelm.201500063)
  121. T. Katase, K. Endo, and H. Ohta, “Characterization of electronic structure around metal-insulator transition in V1-xWxO2 thin films by thermopower measurement “, J. Ceram. Soc. Jpn. 123, 307-311 (2015).(DOI: 10.2109/jcersj2.123.P5-1)
  122. W. S. Choi, H. K. Yoo, and H. Ohta, “Polaron transport and thermoelectric behavior in La-doped SrTiO3 thin films with elemental vacancies”, Adv. Funct. Mater. 25, 799-804 (2015).(DOI: 10.1002/adfm.201403023)
  123. T. Katase, K. Endo, and H. Ohta, “Thermopower analysis of the electronic structure around metal-insulator transition in V1-xWxO2“, Phys. Rev. B 90, 161105(R) (2014). (DOI: 10.1103/PhysRevB.90.161105)
  124. W-S. Choi, H. Ohta, and H-N. Lee, “Thermopower enhancement by fractional layer control in 2D oxide superlattices”, Adv. Mater. 26, 6701-6705 (2014).(DOI: 10.1002/adma.201401676)
    Inside Back Cover
  125. H. Jeen,W-S. Choi, M. D. Biegalski, C. M. Folkman, I-C. Tung, D. D. Fong, J. W. Freeland, D. Shin, H. Ohta, M. F. Chisholm and H-N. Lee, “Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge”, Nature Mater. 12, 1057 (2013).(DOI:10.1038/nmat3736)
  126. H. Jeen, W. S. Choi, J. W. Freeland, H. Ohta, C. U. Jung, H. N. Lee, “Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3–δ“, Adv. Mater. 25, 3651-3656 (2013). (DOI: 10.1002/adma.201300531)
  127. S. Zheng, C. A. J. Fisher, T. Kato, Y. Nagao, H. Ohta, and Y. Ikuhara, “Domain formation in anatase TiO2 thin films on LaAlO3substrates”, Appl. Phys. Lett. 101, 191602 (2012).
  128. H. Ohta, T. Mizoguchi, N. Aoki, T. Yamamoto, A. Sabarudin, and T. Umemura, “Lithium-ion conducting La2/3–xLi3xTiO3 solid electrolyte thin films with stepped and terraced surfaces”, Appl. Phys. Lett. 100, 173107 (2012). [Retraction] “We retract the above mentioned letter that reported on the single crystalline film growth and the Li-ion conductivity of La2/3-xLi3xTiO3 (LLT). Our impedance measurement system of ion onductivity is not applicable for bi-layer conducting material, LLT/SrTiO3. As a result of various measurements, we found that the conductivity of the LLT film as shown in Fig. 4 is not related to the LLT film itself, but related to the SrTiO3 single crystal substrate. We apologize for any confusion that may have caused for the readers of Applied Physics Letters.”
  129. B. Feng, H. Hojo, T. Mizoguchi, H. Ohta, S. D. Findlay, Y. Sato, N. Shibata, T. Yamamoto, and Y. Ikuhara, “Atomic structure of a sigma3 [110]/(111) grain boundary in CeO2“, Appl. Phys. Lett. 100, 073109 (2012).
  130. H. Ohta, T. Mizuno, S. Zheng, T. Kato, Y. Ikuhara, K. Abe, H. Kumomi, K. Nomura, and H. Hosono, “Unusually large enhancement of thermopower in an electric field induced two-dimensional electron gas”, Adv. Mater. 24, 740-744 (2012). (arXiv:1112.2030) Hlighted in Advanced Materials (7 Feb. 2012 issue)
  131. M. Seki, H. Tabata, H. Ohta, K. Inaba, and S. Kobayashi, “Epitaxial thin films of p-type spinel ferrite grown by pulsed laser deposition”, Appl. Phys. Lett99, 242504 (2011).
  132. T. Mizuno, Y. Nagao, A. Yoshikawa, K. Koumoto, T. Kato, Y. Ikuhara, and H. Ohta, “Electric field thermopower modulation analysis of an interfacial conducting layer formed between Y2O3 and rutile TiO2”, J. Appl. Phys. 110, 063719 (2011).
  133. H. Hojo, E. Tochigi, T. Mizoguchi, H. Ohta, N. Shibata, B. Feng, and Y. Ikuhara, Atomic structure and strain field of threading dislocations in CeO2 thin films on yttria-stabilized ZrO2Appl. Phys. Lett. 98, 153104 (2011).
  134. T. Mizoguchi, H. Ohta, H-S. Lee, N. Takahashi, and Y. Ikuhara, “Controlling interface intermixing and properties of SrTiO3-based superlattices”, Adv. Funct. Mater. 21, 2258–2263 (2011).
  135. Y. Kozuka, M. Kim, H. Ohta, Y. Hikita, C. Bell, and H. Y. Hwang, “Enhancing the electron mobility via delta-doping in SrTiO3”, Appl. Phys. Lett97, 222115 (2010).
  136. H. Hojo, T. Mizoguchi, H. Ohta, S. D. Findlay, N. Shibata, T. Yamamoto, and Y. Ikuhara, “Atomic Structure of a CeO2 Grain Boundary: The Role of Oxygen Vacancies”, Nano Lett10, 4668–4672 (2010).
  137. H. Ohta, Y. Sato, T. Kato, S-W. Kim, K. Nomura, Y. Ikuhara and H. Hosono, “Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal”, Nature Communications 1:118 (2010).
  138. H. Koide, Y. Nagao, K. Koumoto, Y. Takasaki, T. Umemura, T. Kato, Y. Ikuhara, and H. Ohta, “Electric field modulation of thermopower for transparent amorphous oxide thin film transistors”, Appl. Phys. Lett97, 182105 (2010).
  139. Y. Nagao, A. Yoshikawa, K. Koumoto, T. Kato, Y. Ikuhara, and H. Ohta, “Experimental characterization of the electronic structure of anatase TiO2: Thermopower modulation”, Appl. Phys. Lett97, 172112 (2010).
  140. Y. Ishida, A. Mizutani, K. Sugiura, H. Ohta, and K. Koumoto, “Metal-nonmetal transition in LixCoO2thin films and thermopower enhancement at high Li concentration”, Phys. Rev. B 82, 075325 (2010).
  141. W-S. Choi, H. Ohta, S-J. Moon, Y-S. Lee, and T-W. Noh, “Dimensional crossover of the polaron dynamics in thermoelectric Nb:SrTiO3/SrTiO3 superlattices: Possible mechanism of thermopower enhancement”, Phys. Rev. B 82, 024301 (2010).
  142. K. Uchida, A. Yoshikawa, K. Koumoto, T. Kato, Y. Ikuhara, and H. Ohta, “A single crystalline strontium titanate thin film transistor”, J. Appl. Phys107, 096103 (2010).
  143. T. Katase, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Fabrication of atomically flat ScAlMgO4epitaxial buffer layer and low-temperature growth of high-mobility ZnO films”, Cryst. Growth Des10, 1084–1089 (2010).
  144. A. Yoshikawa, K. Uchida, K. Koumoto, T. Kato, Y. Ikuhara, and H. Ohta, “Electric-Field Modulation of Thermopower for the KTaOField Effect Transistors”, Appl. Phys. Express 2, 121103 (2009).
  145. H. Ohta, Y. Masuoka, R. Asahi, T. Kato, Y. Ikuhara, K. Nomura, and H. Hosono, “Field-modulated thermopower in a SrTiO3-based field-effect transistor with amorphous 12CaO·7Al2O3glass gate insulator”, Appl. Phys. Lett95, 113505 (2009).
  146. S-W. Kim, Y. Tarumi, H. Iwasaki, H. Ohta, M. Hirano, and H.Hosono, “Thermal conductivity and Seebeck coefficient of 12CaO·7Al2O3electride with a cage structure”, Phys. Rev. B 80, 075201 (2009).
  147. T. Katase, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Large domain growth of GaN epitaxial films on lattice-matched buffer layer ScAlMgO4”, Mater. Sci. Eng. B 161, 66–70 (2009).
  148. Y. Wang, K-H. Lee, H. Ohta, and K. Koumoto, “Thermoelectric properties of electron doped SrO(SrTiO3)n(n = 1, 2) ceramics”, J. Appl. Phys. 105, 103701 (2009).
  149. K. Sugiura, H. Ohta, S. Nakagawa, R. Huang, Y. Ikuhara, K. Nomura, H. Hosono, and K. Koumoto, “Anisotropic carrier transport properties in layered cobaltate epitaxial films grown by reactive solid-phase epitaxy”, Appl. Phys. Lett. 94, 152105 (2009).
  150. K. Sugiura, H. Ohta, Y. Ishida, R. Huang, T. Saito, Y. Ikuhara, K. Nomura, H. Hosono, and K. Koumoto, “Structural Transformation of Ca-Arrangements and Carrier Transport Properties in Ca0.33CoO2Epitaxial Films”, Appl. Phys. Express 2, 035503 (2009).
  151. R. Huang, T. Mizoguchi, K. Sugiura, S. Nakagawa, H. Ohta, T. Saito, K. Koumoto, T. Hirayama, and Y. Ikuhara, “Microstructure evolution of Ca0.33CoO2thin films investigated by high-angle annular dark-field scanning transmission electron microscopy”, J. Mater. Res. 24, 279–287 (2009).
  152. K. Nomura, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2annealing”, Appl. Phys. Lett. 93, 192107 (2008).
  153. R. Huang, T. Mizoguchi, K. Sugiura, H. Ohta, K. Koumoto, T. Hirayama and Y. Ikuhara, “Direct observations of Ca ordering in Ca0.33CoO2thin films with different superstructures”, Appl. Phys. Lett. 93, 181907 (2008).
  154. K. Nomura, T. Kamiya, H. Ohta, K. Shimizu, M. Hirano, and H. Hosono, “Relationship between non-localized tail states and carrier transport in amorphous oxide semiconductor, In-Ga-Zn-O”, Phys. Stat. Sol. (a) 205, 1910–1914 (2008).
  155. H. Ohta, R. Huang, and Y. Ikuhara, “Large enhancement of the thermoelectric Seebeck coefficient for amorphous oxide semiconductor superlattices with extremely thin conductive layers”, Phys. Stat. Sol. (Rapid Research Letter) 2, 105–107 (2008).
  156. Y. Ishida, R. Eguchi, M. Matsunami, K. Horiba, M. Taguchi, A. Chainani, Y. Senba, H. Ohashi, H. Ohta, and S. Shin, “Coherent and Incoherent States of Electron-doped SrTiO3”, Phys. Rev. Lett. 100, 056401 (2008).
  157. K-H. Lee, Y. Mune, H. Ohta, and K. Koumoto, “Thermal stability of giant thermoelectric Seebeck coefficient for SrTiO3/SrTi0.8Nb0.2O3superlattices at high temperature”, Appl. Phys. Express 1, 015007 (2008).
  158. Y. Wang, K-H. Lee, H. Ohta, and K. Koumoto, “Fabrication and thermoelectric properties of heavily rare-earth metal-doped SrO(SrTiO3)n(n= 1, 2) ceramics”, Ceram. Int. 34, 849–852 (2008).
  159. A. Mizutani, K. Sugiura, H. Ohta, and K. Koumoto, “Epitaxial film growth of LixCoO2(0.6 < x < 0.9) via topotactic ion exchange of Na0.8CoO2”, Cryst. Growth Des8, 755–758 (2008).
  160. K. Sugiura, H. Ohta, K. Nomura, T. Saito, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, “Thermoelectric properties of the layered cobaltite Ca3Co4O9epitaxial films fabricated by topotactic ion-exchange method”, Mater. Trans48, 2104–2107 (2007).
  161. Y. Wang, K-H. Lee, H. Hyuga, H. Kita, K. Inaba, H. Ohta, and K. Koumoto, “Enhancement of Seebeck coefficient for SrO(SrTiO3)2by Sm-substitution: Crystal symmetry restoration of disordered TiO6 octahedra”, Appl. Phys. Lett. 91, 242102 (2007).
  162. K. Kato, M. Yamamoto, S. Ohta, H. Muta, K. Kurosaki, S. Yamanaka, H. Iwasaki, H. Ohta, and K. Koumoto, “The effect of Eu-substitution on thermoelectric properties of SrTi0.8Nb0.2O3”, J. Appl. Phys. 102, 116107 (2007).
  163. Y. Mune, H. Ohta, K. Koumoto, T. Mizoguchi, and Y. Ikuhara, “Enhanced Seebeck coefficient of quantum-confined electrons in SrTiO3/SrTi0.8Nb0.2O3superlattices”, Appl. Phys. Lett. 91, 192105 (2007).
  164. Y. Ishida, H. Ohta, A. Fujimori, and H. Hosono, “Temperature dependence of the chemical potential in NaxCoO2: Implications for the large thermoelectric power”, J. Phys. Soc. Jpn. 76, 103709 (2007).
  165. K-H. Lee, S-W. Kim, A. Ishizaki, H. Ohta, and K. Koumoto, “Preparation and thermoelectric properties of heavily Nb-doped SrO(SrTiO3)1epitaxial films”, J. Appl. Phys102, 033702 (2007).
  166. H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, M. Kikuchi, H. Yanagi, T. Kamiya, and H. Hosono, “Heavy hole doping of epitaxial thin films of a wide gap p-type semiconductor, LaCuOSe, and analysis of the effective mass”, Appl. Phys. Lett91, 012104 (2007).
  167. K-H. Lee, S-W. Kim, H. Ohta, and K. Koumoto, “Thermoelectric properties of layered perovskite-type (Sr1-xCax)(Ti1-yNby)2O7”, J. Appl. Phys. 101, 083707 (2007).
  168. M. Yamamoto, H. Ohta, and K. Koumoto, “Thermoelectric phase diagram in a CaTiO3-SrTiO3-BaTiO3system”, Appl. Phys. Lett. 90, 072101 (2007).
  169. K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, “Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations”, Phys. Rev. B 75, 035212 (2007).
  170. H. Ohta, S-W. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, “Giant Thermoelectric Seebeck coefficient of a Two-dimensional Electron Gas in SrTiO3”, Nature Mater. 6, 129–134 (2007).
  171. T. Kamiya, Y. Takeda, K. Nomura, H. Ohta, H. Yanagi, M. Hirano, and H. Hosono, “Self-adjusted, three-dimensional lattice-matched buffer layer for growing ZnO epitaxial film: homologous series layered oxide, InGaO3(ZnO)5”, Cryst. Growth Des. 6, 2451–2456 (2006).
  172. D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, and K. Koumoto, “Thermoelectric properties of A-site substituted Ca1-xRexMnOsystem”, J. Appl. Phys. 100, 084911 (2006).
  173. D. Kurita, S. Ohta, K. Sugiura, H. Ohta, and K. Koumoto, “Carrier generation and transport properties of heavily Nb-doped anatase TiO2epitaxial films at high-temperatures”, J. Appl. Phys. 100, 096105 (2006).
  174. K-H. Lee, H. Ohta, S-W. Kim, and K. Koumoto, “Ruddlesden-Popper phase as thermoelectric materials: Nb-doped SrO(SrTiO3)n(n=1, 2)”, J. Appl. Phys. 100, 063717 (2006).
  175. Y. Ishida, H. Ohta, M. Hirano, A. Fujimori, and H. Hosono, “Potential profiling of the nanometer-scale charge depletion in n-ZnO/p-NiO junction using photoemission spectroscopy”, Appl. Phys. Lett. 89, 153502 (2006).
  176. H. Hiramatsu, H. Kamioka, K. Ueda, H. Ohta, T. Kamiya, M. Hirano, and H. Hosono, “Opto-electronic properties and light-emitting device application of widegap layered oxychalcogenides: LaCuOCh(Ch = chalcogen) and La2CdO2Se”, Phys. Stat. Sol. (a) 203, 2800–2811 (2006).
  177. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors”, Jpn. J. Appl. Phys. 45, 4303–4308 (2006).
  178. K. Sugiura, H. Ohta, K. Nomura, M. Hirano, H. Hosono, and K. Koumoto, “High electrical conductivity of layered cobalt oxide Ca3Co4O9epitaxial films grown by topotactic ion exchange method”, Appl. Phys. Lett89, 032111 (2006).
  179. H. Ohta, A. Mizutani, K. Sugiura, M. Hirano, H. Hosono, and K. Koumoto, “Surface Modification of Glass Substrate for Oxide Heteroepitaxy: Pastable Three-dimensionally Oriented Layered Oxide Thin Film”, Adv. Mater18, 1649–1652 (2006).
  180. K. Sugiura, H. Ohta, K. Nomura, M. Hirano, H. Hosono, and K. Koumoto, “Fabrication and thermoelectric properties of layered cobaltite, γ-Sr0.32Na0.21CoO2epitaxial films”, Appl. Phys. Lett88, 082109 (2006).
  181. K. Sugiura, H. Ohta, K. Nomura, H. Yanagi, M. Hirano, H. Hosono, and K. Koumoto, “Epitaxial film growth and superconducting behavior of sodium-cobalt oxyhydrate, NaxCoO2·yH2O (x~0.3,y~1.3)”, Inorg. Chem. (communication) 45, 1894–1896 (2006).
  182. S. Ohta, H. Ohta, and K. Koumoto, “Grain size dependence of thermoelectric performance of Nb-doped SrTiO3polycrystals”, J. Ceram. Soc. Japan 114, 102–105 (2006).
  183. H. Hiramatsu, K. Ueda, H. Ohta, T. Kamiya, M. Hirano, and H. Hosono, “Excitonic blue luminescence from p-LaCuOSe/n-InGaZn5Olight-emitting diode at room temperature”, Appl. Phys. Lett. 87, 211107 (2005).
  184. PX. Zhu, T. Takeuchi, H. Ohta, WS. Seo, and K. Koumoto, “Preparation and thermoelectric properties of NaxCoO2/Co3O4layered nano-composite”, Mater. Trans46, 1453–1455 (2005).
  185. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, and K. Koumoto, “Large thermoelectric performance of heavily Nb-doped SrTiO3epitaxial film at high-temperature”, Appl. Phys. Lett87, 092108 (2005).
  186. F. Oba, Y. Sato, T. Yamamoto, H. Ohta, H. Hosono, and Y. Ikuhara, “Effect of boundary plane on the atomic structure of [0001] Σ7 tilt grain boundaries in ZnO”, J. Mater. Sci40, 3067–3074 (2005).
  187. T. Kamiya, S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, and H. Hosono, “Electrical properties and structure of p-type amorphous oxide semiconductorxZnO·Rh2O3”, Adv. Funct. Mater. 15, 968–974 (2005).
  188. S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, “High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3single crystals”, J. Appl. Phys. 97, 034106 (2005).
  189. T. Kambayashi, H. Ohta, H. Hoshi, M. Hirano, H. Hosono, T. Takezoe, and K. Ishikawa, “Epitaxial growth of a copper-phthalocyanine on a transparent conductive substrate with an atomically flat surface”, Cryst. Growth Des5, 143–146 (2005).
  190. H. Ohta, S-W. Kim, S. Ohta, K. Koumoto, M. Hirano, and H. Hosono, “Reactive solid-phase epitaxial growth of NaxCoO2 (x ~0.83) via lateral diffusion of Na into a cobalt oxide epitaxial layer”, Cryst. Growth Des. 5, 25–28 (2005).
  191. Y. Gao, Y. Masuda, WS. Seo, H. Ohta, and K. Koumoto, “TiO2 nanoparticles prepared using an aqueous peroxotitanate solutions”, Ceram. Int. 30, 1365-1368 (2004).
  192. Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, “Room temperature preparation of ZrO2precursor thin film in an aqueous peroxozirconium-complex solution”, Chem. Mater. 16, 2615-2622 (2004).
  193. H. Hiramatsu, K. Ueda, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Optical properties and two-dimensional electronic structure in wide-gap layered oxychalcogenide: La2CdO2Se2”, J. Phys. Chem. B 108, 17344–17351 (2004).
  194. F. Oba, H. Ohta, Y. Sato, H. Hosono, T. Yamamoto, and Y. Ikuhara, “Atomic structure of [0001]-tilt grain boundaries in ZnO: A high-resolution TEM study of fiber-textured thin films”, Phys. Rev. B 70, 125415 (2004).
  195. T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto, and Y. Ikuhara, “Atomic and Electronic Structures of Ni/YSZ(111) Interface”, Mater. Trans. 45, 2137–2143 (2004).
  196. H. Hiramatsu, K. Ueda, K. Takafuji, H. Ohta, M. Hirano, T. Kamiya, and H. Hosono, “Degenerate electrical conductive and excitonic photoluminescence properties of epitaxial films of wide gap p-type layered oxychalcogenides, LnCuOCh (Ln=La, Pr and Nd; Ch=S or Se)”, Appl. Phys. A 79, 1521–1523 (2004).
  197. T. Kamiya, H. Ohta, M. Kamiya, K. Nomura, K. Ueda, M. Hirano, and H. Hosono, “Li-doped NiO epitaxial thin film with atomically flat surface”, J. Mater. Res19, 913–920 (2004).
  198. H. Hiramatsu, K. Ueda, K. Takafuji, H. Ohta, M. Hirano, T. Kamiya, and H. Hosono, “Heteroepitaxial growth of wide gap p-type semiconductors: LnCuOCh (Ln=La, Pr and Nd; Ch=S or Se) by reactive solid-phase epitaxy”, Appl. Phys. A 79, 1517–1520 (2004).
  199. H. Hiramatsu, K. Ueda, K. Takafuji, H. Ohta, M. Hirano, T. Kamiya, and H. Hosono, “Fabrication of heteroepitaxial thin films of layered oxychalcogenidesLnCuOCh (Ln=La–Nd; Ch=S–Te) by reactive solid-phase epitaxy”, J. Mater. Res19, 2137–2143 (2004).
  200. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5films”, Appl. Phys. Lett. 85, 1993–1995 (2004).
  201. K. Nomura, H. Ohta, A. Takagi, T, Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature 432, 488–492 (2004).
  202. T. Kamiya, H. Ohta, H. Hiramatsu, K. Hayashi, K. Nomura, S. Matsuishi, K. Ueda, M. Hirano, and H. Hosono, “Natural nanostructures in ionic semiconductors”, Microelectron. Eng. 73-74, 620–626 (2004).
  203. K. Ueda, H. Hiramatsu, H. Ohta, M. Hirano, T. Kamiya, and H. Hosono, “Single-atomic-layered quantum wells built in wide-gap semiconductors LnCuOCh (Ln = lanthanide, Ch = chalcogen)”, Phys. Rev. B 69, 155305 (2004).
  204. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Orita, M. Hirano, T. Suzuki, C. Honjyo, Y. Ikuhara, and H. Hosono, “Growth mechanism for single-crystalline thin film of InGaO3(ZnO)by reactive solid-phase epitaxy”, J. Appl. Phys95, 5532–5539 (2004).
  205. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “All oxide transparent MISFET using high-dielectrics gates”, Miroelectron. Eng. 72, 294–298 (2004).
  206. H. Ohta, T. Kambayashi, K. Nomura, M. Hirano, K. Ishikawa, H. Takezoe, and H. Hosono, “Transparent organic thin-film transistor with a laterally grown non-planar phthalocyanine channel”, Adv. Mater16, 312–315 (2004).
  207. H. Hiramatsu, H. Ohta, T. Suzuki, C. Honjyo, Y. Ikuhara, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Mechanism for heteroepitaxial growth of transparent P-type semiconductor: LaCuOS by reactive solid-phase epitaxy”, Cryst. Growth. Des. 4, 301–307 (2004).
  208. H. Kamioka, H. Hiramatsu, H. Ohta, M. Hirano, K. Ueda, T. Kamiya, and H. Hosono, “Third-order optical nonlinearity originating from room-temperature exciton in layered compounds LaCuOS and LaCuOSe”, Appl. Phys. Lett84, 879–881 (2004).
  209. T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto, and Y. Ikuhara, “Atomic and electronic structures of Cu/α-Al2O3interfaces prepared by pulsed-laser deposition”, Science and Technology of Advanced Materials 4, 575–584 (2003).
  210. H. Hiramatsu, K. Ueda, K. Takafuji, H. Ohta, M. Hirano, T. Kamiya, and H. Hosono, “Intrinsic excitonic photoluminescence and band-gap engineering of wide-gap p-type oxychalcogenide epitaxial films ofLnCuOCh (Ln=La, Pr, and Nd; Ch=S or Se) semiconductor alloys”, J. Appl. Phys94, 5805–5808 (2003).
  211. H. Hiramatsu, K. Ueda, K. Takafuji, H. Ohta, T. Kamiya, M. Hirano, and H. Hosono, “Electrical and optical properties and electronic structures ofLnCuOS (Ln = La similar to Nd)”, Chem. Mater15, 3692–3695 (2003).
  212. S. Narushima, H. Mizoguchi, K. Simizu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya, and H. Hosono, “A p-type amorphous oxide semiconductor and room temperature fabrication of amorphous oxide p-n heterojunction diodes”, Adv. Mater15, 1409–1413 (2003).
  213. H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, and H. Hosono, “Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO”, Appl. Phys. Lett. 83, 1029–1031 (2003).
  214. H. Ohta, T. Kambayashi, M. Hirano, H. Hoshi, K. Ishikawa, H. Takezoe, and H. Hosono, “Application of transparent conductive substrate with atomically flat & stepped surface for lateral growth of organic molecule: vanadyl-phthalocyanine”, Adv. Mater. 15, 1258–1262 (2003).
  215. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin film transistor fabricated in single-crystalline transparent oxide semiconductor”, Science 300, 1269–1272 (2003).
  216. H. Ohta, K. Nomura, M. Orita, M. Hirano, K. Ueda, T. Suzuki, Y. Ikuhara, and H. Hosono, “Single-crystalline films of InGaO3(ZnO)m(m=integer) homologous phase grown by reactive solid-phase epitaxy”, Adv. Funct. Mater13, 139–144 (2003).
  217. H. Ohta, H. Mizoguchi, M. Hirano, S. Narushima, T. Kamiya, and H. Hosono, “Fabrication and characterization of heteroepitaxial p-n junction diode composed of wide-gap oxide semiconductors p-ZnRh2O4/n-ZnO”, Appl. Phys. Lett. 82, 823–825 (2003).
  218. H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya, and Hideo Hosono, “Degenerate p-type conductivity in wide-gap LaCuOS1-xSe(x=0~1) epitaxial films”, Appl. Phys. Lett. 82, 1048–1050 (2003).
  219. H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Heteroepitaxial growth of single-phase zinc blend ZnS film on transparent substrate by pulsed laser deposition under H2S atmosphere”, Solid State Comm. 124, 411–415 (2002).
  220. H. Ohta, M. Orita, M. Hirano, I. Yagi, K. Ueda, and H. Hosono, “Electronic structure and optical properties of p-type transparent oxide semiconductor; SrCu2O2”, J. Appl. Phys. 91, 3074–3078 (2002).
  221. H. Ohta, M. Orita, M. Hirano, and H. Hosono, “Surface morphology and crystal quality of low resistive indium tin oxide grown on yttria-stabilized zirconia”, J. Appl. Phys. 91, 3547–3550 (2002).
  222. M. Miyakawa, R. Noshiro, T. Ogawa, K. Ueda, H. Kawazoe, H. Ohta, M. Orita, M. Hirano, and H. Hosono, “Carrier doping into MgIn2O4epitaxial thin films by proton implantation”, J. Appl. Phys. 91, 2112–2117 (2002).
  223. H. Hiramatsu, K. Ueda, H. Ohta, M. Orita, M. Hirano, and H. Hosono, “Heteroepitaxial growth of a wide-gap p-type semiconductor, LaCuOS”, Appl. Phys. Lett. 81, 598–600 (2002).
  224. H. Hosono, H. Ohta, K. Hayashi, M. Orita, and M. Hirano, “Near UV-emitting diodes based on transparent P-N junction composed of heteroepitaxially grown p-SrCu2Oand n-ZnO”, J. Crystal Growth 237-239, 496–502 (2002).
  225. H. Yanagi, K. Ueda, H. Hosono, H. Ohta, M. Orita, and M. Hirano, “Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2”, Solid State Comm121, 15–17 (2002).
  226. H. Ohta, M. Orita, M. Hirano, and H. Hosono, “Fabrication and characterization of ultraviolet-emitting diode composed of transparent p-n heterojunction, p-SrCu2Oand n-ZnO”, J. Appl. Phys89, 5720–5725 (2001).
  227. M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, “Amorphous transparent conductive oxide InGaO3(ZnO)m (m<4): a Zn 4s Conductor”, Phil. Mag. 81, 501–515 (2001).
  228. K. Ueda, T. Hase, H. Ynagai, H. Kawazoe, H. Hosono, H. Ohta, M. Orita, and M. Hirano, “Epitaxial growth of transparent p-type conducting CuGaOthin films on sapphire (001) substrates by pulsed laser deposition”, J. Appl. Phys. 89, 1790–1793 (2001).
  229. M. Orita, H. Ohta, H. Hiramatsu, M. Hirano, S. Den, M. Sasaki, T. Katagiri, H. Minura, and H. Hosono, “Pulsed laser deposition system for producing oxide thin films at high temperature”, Rev. Sci. Inst. 72, 3340–3343 (2001).
  230. H. Ohta, K. Kawamura, M. Orita, N. Sarukura, M. Hirano, and H. Hosono, “Current injection emission from a transparent p-n junction composed of p-SrCu2O2/n-ZnO”, Appl. Phys. Lett. 77, 475–477 (2000).
  231. H. Ohta, K. Kawamura, M. Orita, N. Sarukura, M. Hirano, and H. Hosono, “UV-emitting diode composed of transparent oxide semiconductors: p-SrCu2O2/n-ZnO”, Electron. Lett. 36, 984–985 (2000).
  232. H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, and H. Hosono, “Highly electrically conductive indium-tin-oxide thin films epitaxially grown on yttria-stabilized zirconia (100) by pulsed-laser deposition”, Appl. Phys. Lett. 76, 2740–2742 (2000).
  233. M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films”, Appl. Phys. Lett77, 4166–4168 (2000).
  234. Y. Michiue, F. Brown, N. Kimizuka, M. Onoda, M. Nakamura, M. Watanabe, M. Orita, and H. Ohta, “Crystal structure of InTi0.75Fe0.25Ti0.67O3.375 and phase relations in the pseudobinary system InFeO3-In2Ti2Oat 1300°C”, Chem. Mater. 12, 2244–2249 (2000).
  235. Y. Michiue, F. Brown, N. Kimizuka, M. Watanabe, M. Orita, and H. Ohta, “Orthorhombic InFe0.33Ti0.67O3.33”, Acta. Cryst. C 55, 1755–1757 (1999).
  236. H. Hiramatsu, H. Ohta, W. S. Seo, and K. Koumoto, “Thermoelectirc properties of (ZnO)5In2Othin films prepared by r.f. sputtering method”, J. Jpn. Soc. Powder and Powder Metal. 44, 44–49 (1997).
  237. H. Ohta, W. S. Seo, and K. Koumoto, “Thermoelectirc properties of homologous compounds in the ZnO-In2Osystem”, J. Am. Ceram. Soc. 79, 2193–2196 (1996).

Review Papers (55)

55. 太田裕道, “Ba1/3CoO2-高温・空気中で安定した性能を示す実用的な熱電変換材料-”, 機能材料 43 (4), 3-9 (2023).

54. 太田裕道, “高温・空気中で安定した性能を示す実用的な熱電変換材料を発見”, クリーンエネルギー 31, No. 12, 41 (2022).

53. 太田裕道, 寺崎一郎, 齊藤圭司, “機能コアを活用した新機能薄膜の創成”, まてりあ 第61巻 第10号, 661-665 (2022). 特集 結晶欠陥に形成される「機能コア」研究の最前線

52. Gowoon Kim* and Hiromichi Ohta*, “1D Atomic Defect Tunnel Structure of Oxygen-Deficient Tungsten Oxide Epitaxial Films and Its Redox Device Applications”, Phys. Status Solidi A 2200058 (2022). (August 23, 2022) (DOI: 10.1002/pssa.202200058)

51. Katsuyuki Matsunaga, Masato Yoshiya, Naoya Shibata, Hiromichi Ohta, and Teruyasu Mizoguchi, “Ceramic Science of Crystal Defect Cores”, J. Ceram. Soc. Jpn. (2022). (July 9, 2022) (DOI: 10.2109/jcersj2.22080)

50. Hiromichi Ohta*, “Thin Film Growth and Thermoelectric Properties of Electron Conducting Oxides”, J. Ceram. Soc. Jpn. 130, 471-476 (2022). [Regular Issue: Special Article-Academic Achievements: The 76th CerSJ Awards for Academic Achievements in Ceramic Science and Technology: Review] (July 1, 2022) (DOI: 10.2109/jcersj2.22061)

49. Anup V. Sanchela*, Mian Wei, Hai Jun Cho, and Hiromichi Ohta*, “Optoelectronic properties of transparent oxide semiconductor ASnO3 (A = Ba, Sr, and Ca) epitaxial films and thin film transistors”, J. Vac. Sci. Technol. A 40, 020803 (2022). [Honoring Dr. Scott Chambers’ 70th Birthday and His Leadership in the Science and Technology of Oxide Thin Films] (February 4, 2022) (DOI: 10.1116/6.0001474)

48. 太田裕道, “安心・安全な熱電変換材料を目指して-優れた変換性能をもつ層状酸化物Ba1/3CoO2“, 化学 Vol. 76, No. 6 68-69 (2021). (2021.6.1)

47. 太田裕道, “過去最高の室温熱電変換性能を示す酸化物の実現”, クリーンエネルギー 30 (3), 46-49 (2021). (2021.3.10)

46. 太田裕道, “エレクトロクロミック素子の開発最前線-遷移金属酸化物の多彩な物性変化を利用してー”, 學士會会報 947, 81-85 (2021). (2021.3.1)

45. Takayoshi Katase and Hiromichi Ohta, “Surface charge accumulation and electrochemical protonation of transition metal oxides using water-infiltrated nanoporous glass”, Semiconductor Science and Technology 34, 123001 (2019). (DOI: 10.1088/1361-6641/ab51b2)

44. Yuqiao Zhang and Hiromichi Ohta, “Electron sandwich doubles the thermoelectric power factor of SrTiO3”, Phys. Status Solidi A 2161800832 (2019). (DOI: 10.1002/pssa.201800832) Back cover

43. 太田裕道, 張 雨橋, “薄い電子層を絶縁体でサンドイッチ:熱電変換特性を高める方法”, 車載テクノロジー 6[5], 26 (2019)

42. T. Katase and H. Ohta, “Oxide-based optical, electrical, and magnetic properties switching devices with water-incorporated gate insulator”, Jpn. J. Appl. Phys. 58, 090501 (2019). (DOI: 10.7567/1347-4065/ab02a5)

41. 太田裕道, “特別記事・注目をあびるエレクトロクロミック材料とその可能性-窓ガラスがメモリーとして利用可能に-”, 工業材料(日刊工業新聞社), 65 [1], 78-82 (2017).

40. I. Terasaki, R. Okazaki, and H. Ohta, “Search for non-equilibrium thermoelectrics”, Scripta Mater. 111, 23–28 (2016)(DOI:10.1016/j.scriptamat.2015.04.033)

39. 太田裕道, “ナノ構造熱電材料の開発動向”, 高分子 2014年11月号 (2014).

38. 太田裕道, “温度差で発電する熱電材料-酸化物の挑戦”, 超精密 18、8 (2012).

37. H. Ohta, “Electric-field thermopower modulation in SrTiO3-based field-effect transistors”, J. Mater. Sci. 48, 2797 (2013).

36. 太田裕道, “チタン酸ストロンチウムの熱電ゼーベック効果”, 応用物理 81[9]、740-745 (2012).

35. 太田裕道, “電界誘起二次元電子ガスの巨大熱電能変調”, セラミックス 47[7], 520 (2012).

34. 太田裕道, “電界誘起2次元伝導層の熱起電力と制御”, 未来材料 11[5], 54–59 (2011).

33. 太田裕道, “水を使って絶縁体から効率のよい熱電材料を作製”, 名大トピックス 213, 6–7 (2011).

32. 太田裕道, “たかが水、されど水-水の電気分解を利用して絶縁体を大きな熱電効果を示す金属に-”, 現代化学 480, 23–28 (2011).

31. 太田裕道, 溝口照康, 幾原雄一, “誘電体TiO2/SrTiO3ヘテロ界面の構造と電子状態”, マテリアルインテグレーション 22, 38–42 (2009).

30. H. Ohta, K. Sugiura, and K. Koumoto, “Recent Progress in Oxide Thermoelectric Materials -p-type Ca3Co4O9 and n-type SrTiO3 –”, Inorg. Chem. 47, 8429–8436 (2008).

29. 太田裕道, 河本邦仁, “基礎科学部会 酸化物熱電変換材料の開発動向”, セラミックス 43, 966–969 (2008).

28. 太田裕道, “厚さ0.4ナノ㍍の極薄SrTiO3シートが発生する巨大熱起電力- 酸化物熱電変換材料の設計”, 未来材料 8, 10–13 (2008).

27. 太田裕道, “酸化物人工超格子 量子サイズ効果による熱起電力増強”, 電気学会誌 128, 290–292 (2008).

26. 太田裕道, “特集にあたって(巻頭言)”, 機能材料 28, 5 (2008).

25. 杉浦健二, 太田裕道, “反応性固相エピタキシャル成長法”, 機能材料 28, 27–33 (2008).

24. 石田行章, 藤森 淳, 太田裕道, 細野秀雄, “熱電コバルト酸化物のキャリア・エントロピーの光電子分光による直接観測”, 固体物理 43, 343–350 (2008).

23. H. Ohta, “Two-dimensional thermoelectric Seebeck coefficient of the SrTiO3 based superlattices”, phys. stat. sol. (b) 245, 2363–2368 (2008).

22. H. Ohta, “Thermoelectrics based on Strontium Titanate”, Mater. Today 10, 44–49 (2007).

21. 太田裕道, “熱電現象の新発見-2DEGが発生する巨大熱起電力”, セラミックデータブック2007(工業製品技術協会)35, 84–87 (2007).

20. 太田裕道, “脱・重金属!!ありふれた金属酸化物で廃熱を電気に変える”, 化学 62, 31–34 (2007).

19. 太田裕道, “誘電体チタン酸ストロンチウム結晶に閉じ込めた電子の巨大熱起電力”, 機能材料 27, 69–74 (2007).

18. 太田裕道, “酸化物熱電変換材料-誘電体中に閉じ込められた二次元電子の巨大熱起電力-“, セラミックス 42, 592–595 (2007).

17. 太田裕道, “毒性物質を使わない高性能酸化物熱電材料の開発”, 熱電学会誌 3, 2–4 (2007).

16. H. Ohta, “Reactive Solid-Phase Epitaxy: A powerful method for epitaxial film growth of complex layered oxides”, J. Ceram. Soc. Jpn. 114, 147 (2006).

15. 野村研二, 太田裕道, 神谷利夫, 細野秀雄, “自然超格子構造をもつ透明酸化物半導体の単結晶薄膜成長と透明トランジスタへの応用”, 材料開発のための顕微鏡法と応用写真集 日本金属学会, 222 (2006).

14. 太田裕道野村研二, 平松秀典, 平野正浩, 細野秀雄, “反応性固相エピタキシャル成長法”, リガクジャーナル 37, 3–10 (2006).

13. 太田裕道, 太田慎吾, 河本邦仁, “特集 世界の熱電変換研究 n型酸化物熱電変換材料の設計指針~ペロブスカイト型SrTiO3~”, マテリアルインテグレーション 18, 2–6 (2005).

12. 野村研二, 太田裕道, 神谷利夫, 平野正浩, 細野秀雄, “透明酸化物半導体を用いた透明電界効果トランジスタ”, マテリアルインテグレーション 18[2] (2005).

11. 太田裕道, “第3章 透明酸化物半導体の高品質薄膜成長”, 機能材料 25, 22–29 (2005).

10. H. Ohta and H. Hosono, “Transparent Oxide Optoelectronics”, Mater. Today 7, 42–51 (2004).

9. 神谷利夫, 太田裕道平松秀典, 上岡隼人, 野村研二, “透明酸化物半導体とデバイスへの展開”, オプトロニクス 2004年10月号, 128–139 (2004).

8. H. Ohta, K. Nomura, H. Hiramatsu, T. Suzuki, K. Ueda, T. Kamiya, M. Hirano, Y. Ikuhara, and H. Hosono, “High-Quality Epitaxial Film Growth of Transparent Oxide Semiconductors”, J. Ceram. Soc. Jpn. 112[S], S602–S609 (2004).

7. 平松秀典, 太田裕道植田和茂, 平野正浩, 細野秀雄, “自然超格子構造を有する透明半導体―エピタキシャル成長と光・電子物性―”, 月刊ディスプレイ 2003年5月号,78–83 (2003).

6. H. Ohta, M. Orita, M. Hirano, K. Ueda, and H. Hosono, “Epitaxial growth of transparent conductive oxides”, International Journal of Modern Physics B 16, 173–181 (2002).

5. H. Hosono, H. Ohta, M. Orita, K. Ueda, and M. Hirano, “Frontier of transparent conductive oxide thin films”, Vacuum 66, 419–425 (2002).

4. H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Frontier of transparent oxide semiconductors”, Solid State Electron. 47, 2261–2267 (2003).

3. 太田裕道折田政寛, 平野正浩, 細野秀雄, “p-SrCu2O2/n-ZnOヘテロ接合LEDの作製と近紫外発光”, 表面科学 22, 419–424 (2001).

2. 太田裕道折田政寛, 平野正浩, 細野秀雄, “透明酸化物半導体を用いた近紫外発光ダイオードの開発”, セラミックス 36, 4, 285–288 (2001).

1. 折田政寛, 太田裕道細野秀雄, “透明酸化物半導体の新しい展開”, 表面 38, 28–36 (2000).

Proceedings (23)

  1. T. Katase, K. Endo, and H. Ohta, “Electrolysis-induced protonation of VO2 thin film transistor for the metal-insulator phase modulation”, Proc. SPIE 9749, Oxide-based Materials and Devices VII, 974916, 974916 (2016). (doi: 10.1117/12.2222255)
  2. H. Ohta, Y. Mune, K. Koumoto, T. Mizoguchi, and Y. Ikuhara, “Critical thickness for giant thermoelectric Seebeck coefficient of 2DEG confined in SrTiO3/SrTi0.8Nb0.2O3superlattices”, Thin Solid Films 516, 5916 (2008).
  3. T, Katase, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Fabrication of ScAlMgO4epitaxial thin films using ScGaO3(ZnO)buffer layers and its application to lattice-matched buffer layer for ZnO epitaxial growth”, Thin Solid Films 516, 5842 (2008).
  4. Y. Mune, H. Ohta, T. Mizoguchi, Y. Ikuhara, and K. Koumoto, Mater. Res. Soc. Symp. Proc. 1044, U09-05 (2008).
  5. Y. Nakanishi, H. Ohta, T. Mizoguchi, Y. Ikuhara, and K. Koumoto, Mater. Res. Soc. Symp. Proc. 1044, U09-06 (2008).
  6. K. Sugiura, H. Ohta, and K. Koumoto, “Thermoelectric performance of epitaxial thin films of layered cobalt oxides grown by reactive solid-phase epitaxy with topotactic ion-exchange methods”, Int. J. Appl. Ceram. Technol. 4, 308 (2007).
  7. K-H. Lee, Y-F. Wang, S-W. Kim, H. Ohta, and K. Koumoto, “Thermoelectric properties of Ruddlesden-Popper phase n-type semiconducting oxides: La-, Nd-, and Nb-doped Sr3Ti2O7”, Int. J. Appl. Ceram. Technol. 4, 326 (2007).
  8. Y. Ogo, K. Nomura, H. Yanagi, H. Ohta, T. Kamiya, M. Hirano, and H. Hosono, “Growth and structure of heteroepitaxial thin films of homologous compoundsRAO3(MO)by reactive solid-phase epitaxy: Applicability to a variety of materials and epitaxial template layers”, Thin Solid Films 496, 64 (2006).
  9. Y. Takeda, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Growth of epitaxial ZnO films on lattice-matched buffer layer: Application of InGaO3(ZnO)6single-crystalline thin film”, Thin Solid Films 486, 28 (2005).
  10. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4”, Thin Solid Films 486, 38 (2005).
  11. T. Kamiya, K. Ueda, H. Hiramatsu, H. Kamioka, H. Ohta, M. Hirano, and H. Hosono, “Two-dimensional electronic structure and multiple excitonic states in layered oxychalcogenide semiconductors, LaCuOCh (Ch = S, Se, Te): Optical properties and relativistic ab initio study”, Thin Solid Films 486, 98 (2005).
  12. H. Hiramatsu, K. Ueda,H. Ohta, M. Hirano, T. Kamiya, and H. Hosono, “Wide gap p-type degenerate semiconductor: Mg-doped LaCuOSe”, Thin Solid Films 445, 304 (2003).
  13. H. Ohta, M. Kamiya, T. Kamiya, M. Hirano, and H. Hosono, “UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO”, Thin Solid Films 445, 317 (2003).
  14. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Electron transport in InGaO3(ZnO)m(m=integer) studied using single-crystalline thin films and transparent MISFETs”, Thin Solid Films 445, 322 (2003).
  15. H. Ohta, K. Nomura. H. Hiramatsu, T. Suzuki, K. Ueda, M. Orita, M. Hirano, Y. Ikuhara, and H. Hosono,Mater. Res. Soc. Symp. Proc.747, 257 (2003).
  16. H. Hiramatsu, K. Ueda, H. Ohta, M. Orita, M. Hirano, and H. Hosono, “Preparation of transparent p-type (La1-xSrxO)CuS thin films by an rf sputtering technique”, Thin Solid Films 411, 125 (2002).
  17. K. Nomura, H. Ohta, K. Ueda, M. Orita, M. Hirano, and H. Hosono, “Novel film growth technique of single crystalline In2O3(ZnO)m(m=integer) homologous compound”, Thin Solid Films 411, 147 (2002).
  18. H. Ohta, M. Orita, M. Hirano and H. Hosono,Key Eng. Mater.214-215, 75 (2002).
  19. M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive deep ultraviolet transparent β-Ga2O3thin film”, Thin Solid Films 411, 134 (2002).
  20. H. Ohta, M. Orita, H. Hiramatsu, K. Nomura, M. Miyakawa, K. Ueda, M. Hirano, H. Hosono, Proceedings of CIMTEC 2002 10th International Ceramics Congress and 3rd Forum on New Materials, Ed. By P. Vincenzini Part D, 983 (2002).
  21. H. Ohta, M. Orita, M. Hirano, H. Hosono, Mater. Res. Soc. Symp. Proc. 666, F3.15.1 (2001).
  22. H. Ohta, M. Orita, M. Hirano, H. Hosono, H. Kawazoe and H. Tanji, Mater. Res. Soc. Symp. Proc. 623, 253 (2000).
  23. H. Ohta, H. Tanji, M. Orita, H. Hosono and H. Kawazoe, Mater. Res. Soc. Symp. Proc. 570, 309 (1999).

Books (6)

  1. Yu-qiao Zhang and Hiromichi Ohta, “2D thermoelectrics”, 2D Nanomaterials for Energy Applications (1st Edition) (Elsevier) (November 1st, 2019).
  2. Hiromichi Ohta, Chapter 5 “Electric Field Thermopower Modulation of 2D Electron Systems” in Thermoelectric Thin Films: Materials and Devices, Ed. Paolo Mele, Dario Narducci, Michihiro Ohta, Kaniskha Biswas, Juan Morante, Shrikant Saini, Tamio Endo, (Springer, 2019).
  3. Hiromichi Ohta and Hidenori Hiramatsu, 10.Fabrication, characterization, and modulation of functional nanolayers, Nanoinformatics, Ed. Isao Tanaka, Springer (26 Feb. 2018)
  4. Hiromichi Ohta, Chapter 18 Thermoelectrics based on oxide thin films in “Metal Oxide-Based Thin Film Structures (1st Edition) Formation, Characterization and Application of Interface-based Phenomena”, Ed. Nini Pryds, Vicenzo Esposito (ISBN 9780128111666), ELSEVIER (published 1st September 2017).
  5. H. Ohtaand K. Koumoto, Chapter 10 Thermoelectric oxides: films and heterostructures,Multifunctional Oxide Heterostructures, (Eds.) E. Y. Tsymbal, E. R. A. Dagotto, C-B. Eom, and R. Ramesh, Oxford (2012).
  6. H. Ohta, Chapter 14 Junctions,Handbook of Transparent Conductors, 1st Edition, (Eds.) D. S. Ginley, H. Hosono, and D. C. Paine, Springer-Verlag (2010).

Invited Talks (128)

128. Prashant R. Ghediya, Yusaku Magari1, Hikaru Sadahira, Takashi Endo, Mamoru Furuta, Yuqiao Zhang, Yasutaka Matsuo, and Hiromichi Ohta, “Improvement in the Reliability for Polycrystalline Indium Oxide based Thin-Film Transistors by Epitaxial Passivation Layers”, The 31st International Display Workshops (IDW ’24), Sapporo Convention Center, Sapporo, Japan, December 4-6, 2024 (Invited).

127. 太田裕道, “全固体電気化学熱トランジスタの開発”, 金属学会 2024年秋期(第175回)講演大会, 大阪大学豊中キャンパス(大阪), 2024年9月17日-20日(招待講演)

126. 太田裕道, “機能性酸化物の「機能」を引き出す薄膜成長とデバイス応用の可能性”, 応用物理学会 2024年(令和6年)秋季学術講演会, 朱鷺メッセほか2会場(新潟県新潟市), 2024年9月16日-20日(分科内招待講演)

125. Hiromichi Ohta, “Oxide-based Solid-State Electrochemical Thermal Transistors”, NANO KOREA 2024, KINTEX, Korea, July 3-5, 2024 (Invited).

124. Hiromichi Ohta, “Functional oxide thin films: From materials to devices”, Korean-Japanese Scientists Joint Seminar, UNIST, Korea, June 27-29, 2024 (Invited).

123. Hiromichi Ohta, “Solid-State Electrochemical Thermal Transistors”, Department Colloquium at Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany, June 11th, 2024 (Invited).

122. Hiromichi Ohta, “Solid-State Electrochemical Thermal Transistor based on Oxygen Sponge SrCoOx (2 < x < 3)”, 2024 MRS Spring Meeting, Seattle, WN, April 22-26, 2024 (Invited).

121. Hiromichi Ohta, “Solid-State Electrochemical Thermal Transistors”, MRM2023/IUMRS-ICA2023 (Symposium A-4), Kyoto, December 11-16, 2023. (Invited)

120.  Hiromichi Ohta, “A thermoelectric oxide, Ba1/3CoO2”, 14th ISAJ Annual Symposium (Integrated Science for a Sustainable Society), Hokkaido University, Sapporo, November 14, 2023 (Plenary).

119. Hiromichi Ohta, “Functional oxide thin film growth and application – An introduction –”, Global Scholar Seminar for Emerging Semiconductor, Emerging Display, Automobile, and Energy, Hanyang University, Korea, October 19, 2023 (Invited).

118. Hiromichi Ohta, “SrCoOx-based solid-state electrochemical thermal transistors”, International Conference on Condensed Matter and Device Physics (ICCMDP-2023), Gandhinagar, September 27-29, 2023 (Invited).

117. 太田裕道, “全固体電気化学熱トランジスタ:遷移金属酸化物の熱伝導率を電気的に切替える固体スイッチ”, 第84回 応用物理学会秋季学術講演会「イオントロニクスにおける酸化物・カルコゲナイトの新機能」, 熊本城ホールほか3会場, 2023年9月19日-23日 (Invited).

116. Hiromichi Ohta, “Film Growth of Functional Oxide Thin Films and Their Applications towards Optoelectronics and Thermoelectrics”, Lecture at Jiangsu University, School of Chemistry and Chemical Engineering, Jiangsu University, China, May 29-31, 2023 (Invited).

115. Hiromichi Ohta, “Thermoelectric Oxide Thin Films”, 2022 Asian Conference on Nanoscience & Nanotechnology (AsiaNANO 2022), BEXCO, Busan, Korea, November 9-11, 2022 (Invited).

114. Hiromichi Ohta, “Thermoelectric Properties of Conducting Oxide Thin Films”, Physics Seminar in Pusan National University, online, 27th May, 2022 (Invited).

113. 太田裕道, ” (学術賞受賞講演) 電子伝導性酸化物の薄膜化と熱電特性に関する研究”, 日本セラミックス協会 2022年 年会, オンライン, 2022年3月10日-12日.

112. Hiromichi Ohta, Qian Yang, Hyoungjeen Jeen, “Solid-State Electrochemical Control of Physical Properties for Transition Metal Oxide Epitaxial Films with Perovskite-Related Crystal Structures”, The American Ceramic Society 2022 Conference on Electronic Materials and Applications (EMA 2022), Orlando, FL (Hybrid), January 19-21, 2022 (Invited).

111. Hiromichi Ohta, “Thermoelectric Energy Conversion using Metal Oxide Thin Films”, The 22nd RIES-HOKUDAI International Symposium, December 5-7, 2021. (Invited)

110. 太田裕道, “反応性固相エピタキシャル成長法+イオン交換法 ―層状酸化物エピタキシャル薄膜を作る方法―”, 第82回 応用物理学会秋季学術講演会 シンポジウム「固相における秩序とは何か:機能を生み出す秩序の概念展開」(世話人:山本哲也 教授(高知工科大)), 2021.9.11 (Invited)

109. 太田裕道, “導電性酸化物薄膜の熱電変換特性”, 日本学術振興会 R025委員会 8月研究会「エナジーハーベスティングデバイスの新材料・新構造・新プロセス(熱電変換,太陽電池)」, 2021.8.23 (Invited)

108. 太田裕道, “金属酸化物薄膜の熱電能・熱伝導”, 第68回応用物理学会春季学術講演会 シンポジウム「ニューノーマル時代のDXを進めるIoT用創エネルギー材料・デバイス研究の新展開」, online, March 18, 2021 (Invited)

107. Hiromichi Ohta, “Electron transport properties of wide bandgap transparent oxide semiconductor, BaSnO3-SrSnO3“, The 12th International Workshop on Oxide Surfaces: IWOX-XII, Lake Placid, NY, USA, January 5-10, 2020 (Plenary)

106. Hiromichi Ohta, “Single Crystalline Film Growth of Layer Structured Oxides and Their Phonon Transports””, 2019 MRS Fall Meeting, Hynes Convention Center, Boston, MA, December 1-6, 2019 (Invited)

105. 太田裕道, “透明酸化物半導体BaSnO3–SrSnO3の電子輸送―エピタキシャル薄膜と薄膜トランジスタ―”, 日本金属学会 2019年秋期(第165回)講演大会, 岡山大学津島キャンパス(岡山県岡山市)2019年9月11日-13日 (基調講演)

104. Hiromichi Ohta, Yuqiao Zhang, “Double enhancement of thermoelectric power factor in SrTiO3 based electron sandwitch”, 4th Functional Oxide Thin Films for Advanced Energy and Information Technology Conference, Torres Vedras, Portugal, July 17-20, 2019 (Invited)

103. Hiromichi Ohta, “Electron Transport Properties of Transparent Oxide Semiconductor, BaSnO3–SrSnO3: Epitaxial Films and Thin Film Transistors”, EM-NANO 2019, Shinshu University, Nagano, June 19-22, 2019 (Invited)

102. 太田裕道, “熱電変換材料としての金属酸化物の可能性”, 第5回大型実験施設とスーパーコンピュータとの連携利用シンポジウム, 秋葉原UDX, 東京, 2019年3月15日(Invited)

101. 太田裕道, “熱電材料の二次元薄膜化と特性向上”, 日本学術振興会161委員会 研究会, Hotel & Resort KYOTO-MIYAZU, 京都府宮津市, 2019年1月24日-25日 (Invited)

100. Hiromichi Ohta, “Electric field thermopower modulation measurements of two-dimensional electron gas”, International mini-workshop on Nonequlibrium transport and phase transition in novel materials, Nanoya Univ., Nagoya, 26th November, 2018 (Invited)

99. Hiromichi Ohta, “Double thermoelectric powerfactor of a 2D electron system”, the International Conference on Electronic Materials and Nanotechnology for Green Environment (ENGE 2018), Jeju, South Korea, 11th-14th November, 2018 (Invited)

98. Hiromichi Ohta, “Development of three-terminal electrochromic device using water electrolysis”, IUMRS-ICEM 2018, Daejeon, South Korea, 19th-24th August, 2018 (Invited)

97. Hiromichi Ohta, “Thermopower of 2D electron systems”, The 2018 International Symposium for Advanced Materials Research (ISAMR 2018), Sun Moon Lake, Taiwan, August 16-19, 2018 (Invited)

96. 太田裕道, “捨てられている熱を電気に変える熱電変換材料”, 国立大学共同利用・共同研究拠点協議会 知の拠点セミナー, 京都大学東京オフィス(東京都・千代田区), 2018年7月20日

95. Hiromichi Ohta, “Double enhancement of thermoelectric power factor in two-dimensional electron system”, the 16th International Nanotech Symposium & Nano-Convergence Exhibition, NANO KOREA 2018, KINTEX, Ilsan, Korea, July 10-13, 2018 (Invited)

94. Hiromichi Ohta, “Electric field thermopower modulation of two-dimensional electron gas”, The 25th International Workshop on Active-Matrix Flatpanel Displays and Devices – TFT Technologies and FPD Materials – (AM-FPD 18), Ryukoku University Avanti Kyoto Hall, Kyoto, Japan, 3rd-6th July, 2018 (Invited)

93. 太田裕道, “二次元電子層のSeebeck効果-人工超格子と電界誘起二次元電子ガス-”, 物性談話会, 名古屋大学, 愛知県名古屋市, 2018年6月14日(招待講演)

92. Hiromichi Ohta, “TBA”, Joint International Symposium in NCTU, National Chiao Tung University, Taiwan, 18th-20th May, 2018 (Invited)

91. Hiromichi Ohta, “Thermopower of two-dimensional electron system”, Physics Seminar in Pusan National University, Busan, Korea, 30th April, 2018 (Invited)

90. 太田裕道, “二次元電子系の熱電ゼーベック効果”, 第65回 応用物理学会春季学術講演会, 早稲田大学 西早稲田キャンパス(東京都, 新宿区), 2018年3月17日-20日(招待講演)

89. 太田裕道, “水を使った機能性酸化物の光・電気・磁気特性切替え”, 平成29年度日本表面科学会東北・北海道支部講演会, 室蘭工業大学, 北海道室蘭市, 2018年3月8日-9日(招待講演)

88. 太田裕道, “半導体薄膜の熱電特性”, 電子情報通信学会シリコン材料デバイス・電子デバイス合同研究会, 北海道大学 百年記念会館(北海道, 札幌市), 2018年2月28日-3月1日(招待講演)

87. H. Ohta and A. Sanchela, “Thermopower of oxide heterostructure”, ICAMD2017 (The 11th International Conference on Advanced Materials and Devices), Jeju, Korea, 5-8 December, 2017 (Invited)

86. 太田裕道, “薄膜トランジスタの熱電能で電子状態を調べる(仮題)”, 第14回 薄膜材料デバイス研究会, 龍谷大学 響都ホール校友会館, 京都, 2017年10月20日-21日(招待講演)

85. 太田裕道, “未定”, 日本金属学会 2017年 秋期講演大会, 北海道大学, 札幌, 2017年9月6日―8日(基調講演)

84. H. Ohta, “Electric Field Modulation of Thermopower in Two-dimensional Electron Gas”, IUMRS-ICAM 2017, Kyoto University, Kyoto, Japan, 27th August – 1st September, 2017 (Invited)

83. H. Ohta, “Electrochemical function modulation of oxides using three-terminal thin film transistor structure with water infiltrated insulator”, 3rd Functional Oxide Thin Films for Advanced Energy and Information Technology Conference, Rome, Italy, July 05-08, 2017 (Invited)

82. 太田裕道, “導電性酸化物薄膜の物性改質方法”, 第64回応用物理学会春季学術講演会(合同セッションK, シンポジウム「金属酸化物の結晶物性に迫る」), パシフィコ横浜, 神奈川, 2017年3月14日-17日(招待講演)

81. H. Ohta, “Thermoelectric Seebeck effect of two dimensional electron gas in SrTiO3”, International conference on Advances in Functional Materials (ICAFM2017),  Anna University, Chennai, India, 6-8, January 2017 (Invited)

80. H. Ohta and W. S. Choi, “Unusually large thermopower of nanostructured oxides”, ENGE 2016 (International Conference on Electronic Materials and Nanotechnology for Green Environment), Ramada Plaza Jeju Hotel, Jeju, South Korea, Nov. 6-9, 2016 (Invited) 国際共同研究・ 物質デバイス領域共同研究拠点

79. 太田裕道, 金木奨太, 橋詰 保, “熱電能電界変調法:AlGaN/GaN-MOSHEMT”, 2016年 第77回応用物理学会秋季学術講演会, 朱鷺メッセ(新潟県新潟市), 2016年9月13日-16日(分科内招待講演) 専攻内共同研究

78. H. Ohta, T. Katase, “Electro-chemical redox switching of functional oxide thin films using water-infiltrated nanoporous glass”, International Workshop on Oxide Surfaces (IWOX-X), Dalian, China, 10-15 January, 2016 Keynote

77. H. Ohta, T. Katase, K. Endo, Y. Suzuki, “Electro-chemical modulation of functional properties for oxide thin films using water-infiltrated nanoporous glass”, CEMS Topical Meeting on Oxide Interfaces 2015, RIKEN, Wako, 5 November, 2015 Invited

76. H. Ohta, “Water electrolysis induced modification of functional oxides −Thermoelectric properties−”, IUMRS-ICAM 2015, Jeju island, Korea, 2015年10月25日-29日

75. 太田裕道, “熱電変換材料って何?”, 日本化学会秋季事業 第5回CSJ化学フェスタ2015, タワーホール船橋, 東京, 2015年10月13日-15日

74. 太田裕道, “水の電気分解を利用した機能性酸化物ナノ層創製”, 日本金属学会 2015年秋期講演大会, 九州大学伊都キャンパス, 福岡, 2015年9月16日-18日(公募シンポジウムの基調講演)

73. H. Ohta, “Development of oxide-based nanostructured thermoelectric materials”, 4th International Symposium on Energy Challenges and Mechanics -working on small scales”, Scotland, UK, 2015年8月11日-13日 (Invited)

72. H. Ohta, “Two-dimensional giant thermopower –SrTiO3-based superlattices and transistors-“, The American Ceramic Society’s 11th International Conference on Ceramic Materials and Components for Energy and Environmental Applications (CMCEE-11), Vancouver, Canada, 2015年6月14日-19日

71. H. Ohta, “Thermoelectric effect of extremely thin electron doped SrTiO3“, The 1st IOP-RIES Joint Workshop, Hokkaido Univ., 2015年3月23日

70. H. Ohta, “Thermopower enhancement of two-dimensional electron gas in oxide semiconductors”, The American Ceramic Society’s Electronic Materials and Applications 2015 (EMA2015), Orlando, Florida USA, 2015年1月21日-23日

69. 太田裕道、「酸化物薄膜作製におけるパルスレーザー堆積法とその応用」、3次元造形&薄膜実践セミナー、東京工業大学、 東京、2014年9月26日

68. 太田裕道、片瀬貴義、「水電気分解を利用した酸化物の熱電能変調」、第75回 応用物理学会秋季学術講演会(シンポジウム:固液界面を使った新しい酸化物エレクトロニクス:化学とデバイスの融合)、北海道大学、札幌、2014年9月17日-20日

67. H. Ohta, “Epitaxial Film Growth and Application of Functional Oxides”, HOKUDAI-NCTU Joint Symposium on Nano, Photo and Bio Sciences, RIES, Hokkaido University, Japan, 10-11 September 2014

66. 太田裕道、「 酸化物半導体に蓄積された二次元電子ガス -熱電能を中心に-」、統合物質創製化学推進事業第5回若手研究会、休暇村支笏湖、2014年6月20日~21日

65. H. Ohta, “Electric Field Modulation of a Thermoelectric Material”, Thermec 2013, Las Vegas, USA, 2013年12月2日-6日

64. 太田裕道、「 酸化物半導体のエピタキシャル薄膜成長」、酸化物アライアンス第11回研究会(第5回公開講演会)「透明導電膜のサイエンス」、産総研つくば中央、2013年5月24日

63. H. Ohta, “Two dimensional thermoelectric effect”, Distinguished Lecture Series for 2012 fall semester in Sungkyunkwan University, Korea, 2012年12月12日

62. H. Ohta, “Electric field thermopower modulation of 2DEG in oxide semiconductor based field effect transistors”, MRS 2012 Fall Meeting, Boston, MA, 2012年11月26日~11月30日

61. H. Ohta, “Unusually large thermopower enhancement in an electric field induced two-dimensional electron gas”, E-MRS 2012 Spring Meeting, Strasbourg, France, 2012年5月14日-18日

60. H. Ohta, “Electric-Field Thermopower Modulation Method”, Japan-Finland March Meeting for the future in thermoelectrics, Nagoya University, 2012年3月13日-14日

59. 太田裕道、「高分解能X線回折法による金属酸化物薄膜の分析」、第240回X線分析研究懇談会、名古屋大学、2011年12月2日

58. 太田裕道、「温度差で発電する熱電材料-酸化物の挑戦」、超精密加工専門委員会第62回研究会(高度エネルギー変換材料)、大阪ガーデンパレス(大阪)、2011年7月13日

57. 太田裕道、「水の電気分解を利用したSrTiO3の金属化と熱電能」、第55回固体イオニクス研究会「遷移金属複合酸化物:新しい合成法、物質、物性」、京都国際会館(京都)、2011年1月26日

56. 太田裕道、「酸化物半導体における熱電能のゲート電界変調」、第5回KEK連携研究会「熱電変換材料と新規機能物質」、筑波大学(つくば)、2010年12月18日

55. 太田裕道、「チタン酸ストロンチウムの熱電能」、第19回強相関コアセミナー、産総研つくば中央(つくば)、2010年12月17日

54. Kyu Hyoung Lee、宗 頼子、太田裕道、河本邦仁、「優秀論文賞受賞記念講演」 Thermoelectric Seebeck Effect of SrTiO3、第71回応用物理学会学術講演会、長崎大学、9月17日

53. H. Ohta, “Electric Field Modulation of Thermopower for SrTiO3“, MRS 2010 spring meeting, San Francisco, CA, 2010年4月5日~9日

52. Hiromichi Ohta, Kenji Sugiura, Kunihito Koumoto, Kenji Nomura, Hidenori Hiramatsu, Masahiro Hirano and Hideo Hosono, “Heteroepitaxy of Complex Oxides With Natural Superlattice Structure”, MRS 2010 spring meeting, San Francisco, CA, 2010年4月5日~9日

51. 太田裕道、「酸化物の熱電現象」、(社)日本磁気学会 第36回化合物新磁性材料研究会「熱電材料と場の理論」、東京大学物性研究所本館6階、2月24日

50. 太田裕道、「チタン酸ストロンチウムの熱電特性-バルク、人工超格子、トランジスタ-」、応用物理学会応用電子物性分科会主催 応用電子物性分科会研究例会 エネルギーハーベスト技術-熱電変換、振動発電の実力と展望-、機械振興会館(東京)、12月21日

49. 太田裕道、「熱電変換 -薄膜によるアプローチ」、日本表面科学会主催 第30回表面科学セミナー「グリーンテクノロジー、表面科学の新たな挑戦」、東京理科大学 森戸記念館(東京)、2009年11月12日

48. 太田裕道、「SrTiO3結晶中に閉じ込められた極薄電子層の巨大熱起電力」、粉体粉末冶金協会平成21年度秋季大会、名古屋国際会議場(名古屋)、2009年10月27日

47. H. Ohta, “Thermoelectric Seebeck effect of SrTiO3 – Electron doped bulks, superlattices and field effect transistors”, The 16th Workshop on Oxide Electronics, Tarragona (Spain), 2009年10月6日

46. 太田裕道、「金属酸化物による熱電変換 -エピタキシャル薄膜によるアプローチ-」、第70回応用物理学会学術講演会(『機能性酸化物研究グループ・合同セッション:ワイドギャップ酸化物半導体材料・デバイス・応用電子物性分科会』企画「社会の持続的発展を目指す酸化物研究開発の現状と未来」)、2009年9月8日、富山大学(富山)

45. 太田裕道、「SrTiO3の熱電特性」、日本学術振興会 透明酸化物光・電子材料第166委員会 第45回研究会、2009年7月17日、アイビーホール青学会館

44. 太田裕道、「熱電変換:極薄チタン酸ストロンチウム二次元電子の魅力」、フィラー研究会 第147回フィラー研究会、2009年7月9日、エル大阪

43. Hiromichi Ohta, Akira Yoshikawa, Daisuke Kurita, Kunihito Koumoto, Ryoji Asahi, Yumi Masuoka, Kenji Nomura, and Hideo Hosono, “Electric Field Induced Giant Thermopower of Two-dimensional Electron Gas at the Gate Insulator/SrTiO3 Heterointerface”, 2009 MRS spring meeting, San Francisco, CA, 2009年4月13日~17日

42. 太田裕道、「SrTiO3結晶に閉じ込められた二次元電子の巨大熱電効果」、日本化学会第89春季年会、平成21年3月27日~30日、日本大学理工学部船橋キャンパス

41. 太田裕道、「人工宝石チタン酸ストロンチウムによる熱電変換の可能性」、日本ファインセラミックス協会主催 第23回JFCAテクノフェスタ、メルパルク東京(東京)、2009年1月26日

40. H. Ohta, “Thermoelectric Seebeck coefficient of two-dimensional electron layer in SrTiO3 crystal”, Villa Conference on Complex Oxide Heterostructures, Orange Tree Villa, Clermont, FL, 2008年11月2日~6日

39. 太田裕道、「チタン酸ストロンチウム超格子の作製と熱電変換材料への応用」、東海ものづくり創生協議会主催 平成20年度第2回技術シーズ発表会、ミッドランドスクエア会議室(名古屋)、2008年10月23日

38. H. Ohta, “Enhancement of thermoelectric performance using 2DEG”, Shandong University Seminar (organized by Prof. Wang Chunlei), Shandong University(山東大学・中国), 2008年10月22日

37. Kunihito Koumoto and Hiromichi Ohta, “SrTiO3-based superlattices for thermoelectric energy conversion”, Materials Science & Technology 2008 Conference and Exhibition, David Lawrence Convention Center, Pittsburgh, Pennsylvania, 2008年10月5日~9日

36. H. Ohta, “Giant Thermopower of Two Dimensionally Confined Electrons in Dielectric Oxides”, Nagoya Univ.-Tsinghua Univ.-Toyota Motor Corp. Joint Symposium, 名古屋大学(名古屋)、2008年9月10日~12日

35. H. Ohta, “Two-dimensional thermoelectric Seebeck coefficient of electron doped SrTiO3”, The 7th Korea-Japan Conference on Ferroelectricity, チェジュ大学 (韓国), 2008年8月6日~9日

34. 太田裕道、「熱電変換材料としての金属酸化物の可能性」、応用物理学会東海支部第12回基礎セミナー、名古屋大学(名古屋)、2008年3月7日

33. 太田裕道、杉浦健二、「層状コバルト酸化物エピタキシャル薄膜の作製と熱電特性」、平成19年度 東京工業大学応用セラミックス研究所ワークショップ「酸化物エピタキシーの表面界面制御と機能開発」、東京工業大学(横浜)、2008年1月28日~29日

32. 太田裕道、「ありふれた酸化物を使った熱電変換材料の開発」、東海化学工業会セミナー「元素を駆使した光・電子材料の研究開発」、栄ガスビル(名古屋)、2007年12月6日

31. H. Ohta, “Two-dimensional Seebeck Effect in SrTiO3 Superlattices”, 7th Pacific Rim Conference on Ceramic and Glass Technology, Shanghai (China), 2007年11月13日

30. Hiromichi Ohta and Kunihito Koumoto, “Development of thermoelectric oxide based on SrTiO3”, 1st International Forum on Advanced Materials, Shanghai (China), 2007年11月10日

29. H. Ohta, T. Mizoguchi, Y. Mune, Y. Ikuhara, K. Koumoto, “Enhanced Seebeck coefficient of quantum confined electrons in the SrTiO3/SrTi0.8Nb0.2O3 superlattices”, The 7th France-Japan Workshop on Nanomaterials, Strasbourg (France), 2007年10月24日

28. H. Ohta, “Development of SrTiO3-based thermoelectric thin film with two dimensional electrons”, The 14th International Workshop on Oxide Electronics, Jeju (Korea), 2007年10月8日

27. 太田裕道、金 聖雄、宗 頼子、溝口照康、野村研二、太田慎吾、野村隆史、中西由貴、幾原雄一、平野正浩、細野秀雄、河本邦仁、「熱電変換材料としての誘電体チタン酸ストロンチウム-誘電体超格子に閉じ込められた二次元電子ガスの巨大熱起電力-」、第4回日本熱電学会学術講演会、2007年8月29日-30日、大阪大学(吹田)

26. H. Ohta, “Enhanced Seebeck coefficient of two-dimensionally confined electrons in a SrTiO3 unit cell layer”, International Symposium on Nano-Thermoelectrics, Osaka (Japan), 2007年6月11日-12日

25. H. Ohta, “Giant thermoelectric response of two-dimensional electrons confined within a unit cell layer of SrTiO3”, The 5th International Symposium on Transparent Oxide Thin Films for Electronics and Optics (TOEO-5), 湘南国際村(神奈川)、2007年5月21日~22日

24. 太田裕道、「熱電変換材料としてのチタン酸ストロンチウムの可能性」、平成18年度第3回熱電変換材料研究会、広島市産業振興センター(広島)、2007年3月23日

23. 太田裕道、「金属酸化物の薄膜作製技術・熱電特性」、北陸先端科学技術大学院大学マテリアルサイエンス研究科セミナー、北陸先端科学技術大学院大学(石川)、2006年11月21日

22. 太田裕道、河本邦仁、「熱を電気に変える石ころ:原子レベルの制御技術によって作られた金属酸化物薄膜」、テクノフェア名大2006、名古屋大学、2006年10月27日

21. 太田裕道、「透明酸化物半導体オプトエレクトロニクスデバイスの開発」、日本セラミックス協会2006年年会、東京大学駒場キャンパス(東京)、(進歩賞受賞記念講演)

20. H. Ohta, S-W. Kim, K. Nomura, S. Ohta, T. Nomura, M. Hirano, H. Hosono, and K. Koumoto, “Giant Seebeck effect originating from 2DEG at the TiO2/SrTiO3 heterointerface”, the 2005 MRS Fall Meeting, Boston (USA), 2005年11月27日~12月2日

19. H. Ohta, S. Ohta, and K. Koumoto, “Large Thermoelectric Response of Ti-containing Perovskite Oxides”, SSTE-1; a special symposium on the 4th China International Conference on High-Performance Ceramics, China, 2005年10月23日~26日

18. 太田裕道、「高分解能薄膜X線回折によるエピタキシャル薄膜の結晶性評価」、平成17年度応用物理学会東海支部第7回基礎セミナー「薄膜の評価技術」、2005年9月29日~30日

17. 太田裕道、太田慎吾、杉浦健二、河本邦仁、「酸化物熱電変換材料のエピタキシャル薄膜成長」、日本セラミックス協会第18回秋季シンポジウム、大阪府立大学(大阪)、2005年9月27日~29日

16. 太田裕道、「透明酸化物半導体の高品質エピタキシャル薄膜成長と光電子デバイス」、日本セラミックス協会東海支部第31回東海若手セラミスト懇話会、犬山(愛知)、2005年6月16日~17日

15. 太田裕道、「反応性固相エピタキシャル成長法-デバイス品質の酸化物自然超格子を作るための必殺技-」、第9回ガラス表面研究討論会、東京工業大学(東京)、2005年2月8日

14. 太田裕道、「透明酸化物半導体エピタキシャル薄膜成長とデバイス開発」、人工結晶工学会新材料・新技術分科会平成15年度第1回講演会、2004年3月3日

13. 太田裕道、「透明酸化物半導体の光・電子デバイス」、平成15年度東北大学金属材料研究所ワークショップ「コンビナトリアル固体化学の新展開と酸化物半導体」、2004年1月23日~24日

12. H. Ohta, K. Nomura, H. Hiramatsu, T. Kamiya, M. Hirano and H. Hosono, “Epitaxial Growth and Application of Transparent Oxide Semiconductors”, 204th Meeting of the Electrochemical Society, Olando, USA, 2003年10月12日~16日

11. H. Ohta, K. Nomura, H. Hiramatsu, T. Suzuki, K. Ueda, T. Kamiya, M. Hirano, Y. Ikuhara and H. Hosono, “Single-crystalline film growth techniques of transparent oxide semiconductors” 、PacRim 2003、名古屋国際会議場(名古屋)、2003年9月29日~10月2日

10. H. Ohta, H. Hiramatsu, M. Orita, M. Hirano, K. Nomura, K. Ueda, H. Hosono, T. Suzuki, Y. Ikuhara, “Reactive Solid-Phase Epitaxy – A magical way to fabricate single-crystalline thin films of complex oxides with superlattice structure ?”, 2002 MRS Fall Meeting, Boston, USA, 2002年12月2日~6日

9. H. Ohta, K. Nomura, K. Ueda, M. Orita, M. Hirano, H. Hosono, “Single crystal films of In2O3(ZnO)m (m=integer) natural super lattice grown by novel solid-state diffusion technique”, The International Conference On Metallurgical Coatings And Thin Films ICMCTF 2002, San Diego, California, USA , 2002年4月22日~26日

8. 太田裕道、「透明酸化物半導体のエピタキシャル薄膜成長」、2002年電気化学秋季大会、東京、2002年9月12日~13日

7. 太田裕道、「透明酸化物半導体を用いた近紫外発光ダイオードの開発」、第7回セラミックス・プラザ8 (日本セラミックス協会中国四国支部主催), 岡山, 2002年11月15日

6. 太田裕道、「透明酸化物半導体のエピタキシャル成長と光・電子デバイスへの応用」、産総研・セラミックス研究部門講演会、名古屋、2002年12月16日

5. H. Ohta, M. Orita, M. Hirano, H. Hosono, “Improvement of UV-light emission for P-N heterojunction LED composed of p-SrCu2O2 and n-ZnO”, MRS 2001 spring meeting, San Francisco, California, USA, 2001年4月16日~20日

4. H. Ohta, M. Orita, K. Ueda, M. Hirano, H. Hosono, “Epitaxial growth of transparent conductive oxides”, International Conference on Materials for Advanced Technologies ICMAT 2001 MRS-Singapore, Singapore, Singapore, 2001年7月1日~6日

3. 太田裕道、折田政寛、平野正浩、細野秀雄、「透明酸化物半導体のヘテロp-n接合による紫外発光ダイオード」、日本セラミックス協会第12回フォトニクス討論会, 東京, 2001年8月24日

2. 太田裕道、折田政寛、平野正浩、「透明酸化物ヘテロp-n接合への電流注入による室温紫外発光」、2001年春季第48回応用物理学関連連合講演会、東京、2001年3月28日~31日

1. 太田裕道、折田政寛、平野正浩、細野秀雄、「初めて実現した酸化物紫外発光ダイオード:p-SrCu2O2/n-ZnO」、第285回蛍光体同学会、2000年

Patents

US20150148218
STRONTIUM COBALTITE OXYGEN SPONGE CATALYST AND METHODS OF USE
Ho Nyung Lee, Hyoungjeen Jeen, Woo Seok Choi, Michael Biegalski, Chad M Folkman, I Tung, Dillon D Fong, John W Freeland, Dongwon Shin,Hiromichi Ohta, Matthew F Chisholm

PCT/JP2007/059766
THERMOELECTRIC MATERIAL, INFRARED SENSOR AND IMAGE FORMING DEVICE
Hiromichi OHTA, Kunihito KOUMOTO, Yoriko MUNE

PCT/JP2005/003273
AMORPHOUS OXIDE AND THIN FILM TRANSISTOR
Hideo HOSONO, Masahiro HIRANO, Hiromichi OTA, Toshio KAMIYA, Kenji NOMURA

PCT/JP2003/001756
LnCuO(S, Se, Te) MONOCRYSTALLINE THIN FILM, ITS MANUFACTURING METHOD, AND OPTICAL DEVICE OR ELECTRONIC DEVICE USING THE MONOCRYSTALLINE THIN FILM
Hideo HOSONO, Masahiro HIRANO, Hiromichi OTA, Masahiro ORITA, Hidenori HIRAMATSU, Kazushige UEDA

PCT/JP2002/011404
NATURAL SUPERLATTICE HOMOLOGOUS SINGLE CRYSTAL THIN FILM, METHOD FOR PREPARATION THEREOF, AND DEVICE USING SAID SINGLE CRYSTAL THIN FILM
Hideo HOSONO, Hiromichi OTA, Masahiro ORITA, Kazushige UEDA, Masahiro HIRANO, Toshio KAMIYA

PCT/JP2001/005928
ULTRAVIOLET-TRANSPARENT CONDUCTIVE FILM AND PROCESS FOR PRODUCING THE SAME
Hiromichi OTA, Masahiro HIRANO, Hideo HOSONO, Masahiro HIRANO

PCT/JP2001/000465
LIGHT EMITTING DIODE AND SEMICONDUCTOR LASER
Hideo HOSONO, Hiromichi OTA, Masahiro ORITA, Kenichi KAWAMURA, Nobuhiko SARUKURA, Masahiro HIRANO

Press report

Press Release Practical Indium Oxide-based Thin-Film Transistors (Hokkaido University, Kochi University of Technology) August 8, 2024

Prashant R. Ghediya, Yusaku Magari*, Hikaru Sadahira, Takashi Endo, Mamoru Furuta, Yuqiao Zhang, Yasutaka Matsuo, and Hiromichi Ohta*, “Reliable operation in high-mobility indium oxide thin film transistors”, Small Methods 2400578 (2024). (August 3, 2024) (DOI: 10.1002/smtd.202400578)

[1] “8K有機EL TV画面を駆動可能 高電子移動度の酸化物TFT”, EE Times Japan (2024.08.09), [2] “北大ら,安定性の高い酸化物薄膜トランジスタを実現”, オプトロニクスオンライン (2024.08.08), [3] “実用レベルの酸化物薄膜トランジスタを発表――超大型8K有機ELテレビ開発を後押し 北海道大学と高知工科大学”, Fabcross for エンジニア (2024.08.08), [4] “性能が従来比10倍の酸化物薄膜トランジスタ~次世代の超大型有機ELテレビに~”, アドコム・メディア (2024.08.07), [5] “北大、TFTの電子移動度を10倍に向上 8K有機ディスプレー向け”, 日刊工業新聞 電子版 (2024.08.14), [6] “TFTの電子移動度10倍に 北大、8K有機ELディスプレー向け”, 日刊工業新聞 21面 (2024.08.14), [7] “北大、従来⽐10倍の性能を⽰す酸化物薄膜トランジスタを実現”, 半導体Times (2024.08.07), [8] “「薄膜トランジスタ」電子移動度10倍に、北大などが成功した意義”, Yahoo!ニュース (2024.08.18), [9] “「薄膜トランジスタ」電子移動度10倍に、北大などが成功した意義”, 日刊工業新聞 ニュースイッチ (2024.08.18), [10] “8K有機EL TV画面を駆動可能 高電子移動度の酸化物TFT”, EE Times Japan (2024.08.09), [11] “「薄膜トランジスタ」電子移動度10倍に、北大などが成功した意義”, Gooニュース (2024.08.18), [12] “北大と高知工科大が従来比10倍の性能の実用レベルのTFT 次世代超大型8K有機ELテレビ開発を加速”, 電波新聞 (2024.08.23), [13] ”北大など、電子移動度が10倍の酸化物TFT 大型OLEDに”, NIKKEI Tech Foresight (2024.08.28), [14] “Development of oxide thin-film transistors (TFTs) with ten times higher performance than current TFTs — Stability improvement while maintaining high electron mobility”, Science Japan (JST) (2024.10.29), [15] “北海道大学和高知工科大学开发出性能比以往高10倍的氧化物薄膜晶体管,为新一代超大型有机EL电视开辟道路”, 客観日本 (2024.10.03)

Press Release Performance of our thermal transistor has been improved (Hokkaido University, Osaka University) July 2, 2024

Zhiping Bian, Mitsuki Yoshimura, Ahrong Jeong, Haobo Li, Takashi Endo, Yasutaka Matsuo, Yusaku Magari, Hidekazu Tanaka, Hiromichi Ohta*, “Solid-State Electrochemical Thermal Switches with Large Thermal Conductivity Switching Widths”, Adv. Sci. 2401331 (2024). (June 25, 2024) (DOI: 10.1002/advs.202401331Open Access

[1] “全固体熱トランジスタの制御幅3.5倍…北⼤、廃熱の高⾼度利用⽤提案”, 日刊工業新聞(2024.07.04), [2] “全固体熱トランジスタの制御幅3.5倍…北⼤、廃熱の高⾼度利用⽤提案”, ニュースイッチ by 日刊工業新聞 (2024.07.04), [3] “全固体熱トランジスタの制御幅3.5倍…北⼤、廃熱の高⾼度利用⽤提案”, 日刊工業新聞電子版 (2024.07.04), [4] “全固体熱トランジスタの制御幅3.5倍…北大、廃熱の高度利用提案”, Yahooニュース (2024.07.05), [5] “北海道大学ら、熱トランジスタの高性能化に成功”, EE Times Japan (2024.07.05), [6] “北大など、熱伝導率制御幅を従来比1.5倍にした「熱トランジスタ」を開発”, マイナビニュース (2024.07.03), [7] “全固体熱トランジスタの制御幅3.5倍…北大、廃熱の高度利用提案”, gooニュース (2024.07.05), [8] “北大など、熱伝導率制御幅を従来比1.5倍にした「熱トランジスタ」を開発”, BIGLOBEニュース (2024.07.03), [9] “北大など、熱伝導率制御幅を従来比1.5倍にした「熱トランジスタ」を開発”, exciteニュース (2024.07.05), [10] “北大など、熱伝導率制御幅を従来比1.5倍にした「熱トランジスタ」を開発”, マピオン (2024.07.03), [11] “全固体熱トランジスタの制御幅3.5倍…北大、廃熱の高度利用提案”, dmenuニュース(2024.07.05), [12] “北大など、熱伝導率制御幅を従来比1.5倍にした「熱トランジスタ」を開発”, Rakuten Infoseek News (2024.07.05), [13] “北大など、高性能な全固体熱トランジスタ 廃熱利用に”, NIKKEI Tech Foresight  (2024.07.17), [14] “熱の伝わりやすさを制御”, 日本経済新聞 (2024.7.30), [15] “熱の伝わりやすさを制御、廃熱利用目指す 北大など”, 日本経済新聞オンライン (2024.07.30), [16]  “平和な用途に”, 日刊工業新聞 (2024.07.08)

Press Release Solid-state thermal transistor demonstrated (Hokkaido University) February 22, 2023

Qian Yang, Hai Jun Cho, Zhiping Bian, Mitsuki Yoshimura, Joonhyuk Lee, Hyoungjeen Jeen, Jinghuang Lin, Jiake Wei, Bin Feng, Yuichi Ikuhara, and Hiromichi Ohta*, “Solid-State Electrochemical Thermal Transistors”, Adv. Funct. Mater. 2214939 (2023). (February 21, 2023) (DOI: 10.1002/adfm.202214939)

[1]”北大,全固体電気化学熱トランジスタを開発”, Optronics Online [2] “北大、熱伝導率を電気スイッチで切り替え 全固体熱トランジスタ開発”, 日刊工業新聞(電子版) [3] “熱伝導率を制御する全固体電気化学熱トランジスタを作製 北海道大学”, fabcross for エンジニア [4] “北大、実用化可能な全固体電気化学熱トランジスタの作製に成功”, マイナビニュース [5] “北大、実用化可能な全固体電気化学熱トランジスタの作製に成功”, Mapionニュース [6] “熱伝導率を電気スイッチで切り替え、北大が開発「全固体熱トランジスタ」がスゴい”, ニュースイッチ [7] “熱伝導率を電気スイッチで切り替え、北大が開発「全固体熱トランジスタ」がスゴい”, Yahoo!ニュース [8] “熱伝導率を電気スイッチで切り替え、北大が開発「全固体熱トランジスタ」がスゴい”, NEWSPICKS [9] “熱伝導率を電気スイッチで切り替え、北大が開発「全固体熱トランジスタ」がスゴい”, gooニュース [10] “熱伝導率を電気スイッチで切り替え、北大が開発「全固体熱トランジスタ」がスゴい”, dmenuニュース [11] “Solid-state thermal transistor demonstrated”, Science Daily  [12] “Solid-state thermal transistor demonstrated”, Nano Werk [13] “Solid-state thermal transistor demonstrated”, EurekAlert! [14] “Solid-state thermal transistor demonstrated”, Bioengineer.org [15] “Scientists develop solid-state electrochemical thermal transistor”, Technewsboy [16] “Scientists Develop Solid-State Electrochemical Thermal Transistor”, NEWS AZI [17] “Scientists develop solid-state electrochemical thermal transistor”, Today Headline [18] “Solid-state thermal transistor demonstrated”, NewsBeezer [19] “Solid-state thermal transistor demonstrated”, VERVE TIMES [20] “Scientists make solid-state thermal transistor”, Compound Semiconductor Magazine [21] “Solid-State Thermal Transistor: The Future of Thermal Management Technology”, AZO MATERIALS [22] “Solid-State Thermal Transistor Demonstrated”, Lab Manager [23] “Solid-State Thermal Transistor Demonstrated”, RealClear Science [24] “Developed Solid State Electrochemical Thermal Transistor”, Optimum Physics [25] “Solid-state thermal transistor demonstrated”, One Eye News [26] “Solid-state thermal transistor demonstrated”, KNOWLEDIA [27] “Solid-state thermal transistor demonstrated”, AlphaGalileo [28] “Solid-State Electrochemical Thermal Transistor Without Using Liquid”, Semiconductor Engineering [29] “Solid-state thermal transistor demonstrated”, Plato Data Intelligence [30] “Scientists develop solid-state electrochemical thermal transistor”, NEWS BREAK [31] “Scientists develop solid-state thermoelectric transistors”, News 7F [32] “Hokkaido University: Solid-State Thermal Transistor Demonstrated”, Targeted News Service [33] “Scientists develop solid-state electrochemical thermal transistor”, Newsbit [34] “Solid-State Thermal Transistor Demonstrated”, Eurasia Review [35] “Scientists develop solid-state electrochemical thermal transistor”, Tech Xplore [36] “Solid-state thermal transistor demonstrated”, asiaresearchnews [37] “Solid-state thermal transistor demonstrated”, Mirage News [38] “Scientists develop solid-state electrochemical thermal transistor”, Techstreet Now [39] “Tranzystor termiczny, jakiego jeszcze nie było. Wykorzystuje się go częściej, niż myślisz”, Chip.pl [40] “Transistor thermique à semi-conducteurs démontré | Alerte Eurek !”, Posts US News [41] “Criado primeiro transstor trmico de estado slido”, Vision Art News [42] “浅析固态热晶体管开启热管理技术新时代”, 电子发烧友 [43] “展示了固态热晶体管”, 0XZX [44] “首個固態電化學熱晶體管問世”, 科技日報 [45] “経営ひと言/北海道大学・太田裕道教授「熱を曲げたい」”, 日刊工業新聞(オンライン) [46] “北大、実用化可能な全固体電気化学熱トランジスタの作製に成功”, Rakuten Infoseek News [46] “北海道大学などが全固体電気化学熱トランジスタ、熱伝導率を電気制御”, 日経クロステック

Press Release Clarification of material properties for clearly better displays (Hokkaido University) October 14, 2022

Hui Yang*, Yuqiao Zhang, Yasutaka Matsuo, Yusaku Magari, and Hiromichi Ohta*, “Thermopower Modulation Analyses of High-mobility Transparent Amorphous Oxide Semiconductor Thin-Film Transistors”, ACS Appl. Electron. Mater. 4, 5081-5086 (2022). (September 29, 2022) (DOI: 10.1021/acsaelm.2c01210)

[1] “北大、透明酸化物半導体「ITZO」の高電子移動度の起源を解明”, マイナビニュース, 2022.10.11, [2] “北大,高性能透明酸化物の高電子移動度の起源解明”, オプトロニクスオンライン, 2022.10.11, [3] “北大、透明酸化物半導体「ITZO」の高電子移動度の起源を解明”, マピオン, 2022.10.11, [4] “北大、透明酸化物半導体「ITZO」の高電子移動度の起源を解明”, BIGLOBE, 2022.10.11, [5] “北大、透明酸化物半導体「ITZO」の高電子移動度の起源を解明”, NEWS PICKS, 2022.10.11, [6] “北大、透明酸化物半導体「ITZO」の高電子移動度の起源を解明”, Rakuten Infoseek News, 2022.10.11, [7] “Clarification of material properties for clearly better displays”, Mirage, 2022.10.14, [8] “Clarification of material properties for clearly better displays”, AlphaGalileo, 2022.10.14, [9] “Clarification of material properties for clearly better displays”, nanowerk, 2022.10.14, [10] “Analyzing a new material that promises faster, higher resolution displays”, Phys.org, 2022.10.14, [11] “Clarification of material properties for clearly better displays”, ScienceDaily, 2022.10.14, [12] “Clarification of material properties for clearly better displays”, Day to news.com, 2022.10.15, [13] “Clarification Of Material Properties For Clearly Better Displays”, VerveTimes, 2022.10.15, [14] “Clarification Of Material Properties For Clearly Better Displays”, SWIFT TELECAST, 2022.10.15, [15] “Analyzing A New Material That Promises Faster, Higher Resolution Displays”, SWIFT TELECAST, 2022.10.15, [16] “Clarification of material properties for clearly better displays”, Asia Research News, 2022.10.15, [17] “Clarification of fabric properties for clearly higher shows”, NM PRO News Magazine, 2022.10.16, [18] “Clarify material properties for better presentations with clarity”, precaliga, 2022.10.15, [19] “Clarification of material properties for dramatically better visualizations”, pandora-uk.org, 2022.10.15, [20] “重磅!ITZO电子迁移率是IGZO的5倍以上”, Wit OLED, 2022.10.15, [21] “New Material Offers Faster and Higher Resolution Displays”, AZO Materials, 2022.10.17

Press Release  Practical thermoelectric material that shows stable performance at high temperatures in air is discovered — Oxide thermoelectric material with good reproducibility and high performance at a practical level — (Hokkaido University) (AIST) July 13, 2022

Xi Zhang#, Yuqiao Zhang#*, Liao Wu, Akihiro Tsuruta, Masashi Mikami, Hai Jun Cho, and Hiromichi Ohta*, “Ba1/3CoO2: A thermoelectric oxide showing a reliable ZT of ~0.55 at 600℃ in air”, ACS Appl. Mater. Interfaces (2022). (July 12, 2022) (DOI: 10.1021/acsami.2c08555)

[1] 日刊工業新聞 (18面), “酸化物系熱電変換材 600℃で安定動作 北大・産総研” (2022.7.13), [2] “Efficient, Stable, and Eco-Friendly Thermoelectric Material Discovered”, (2022.07.13) Lab Manager, [3] “New Eco-Friendly Thermoelectric Material Can Resist Temperatures of 600 °C”, (2022.07.13) AZO Materials, [4] “Scientists discover reliable, stable, and environmentally beneficial thermoelectric material”, (2022.07.13) ThePrint, [5] “Efficient, stable, and eco-friendly thermoelectric material discovered”, (2022.07.13) ScienceDaily, [6] “Efficient, stable, and eco-friendly thermoelectric material discovered”, (2022.07.13) Bioengineer.org, [7] “Scientists discover reliable, stable, and environmentally beneficial thermoelectric material”, (2022.07.13) ANI, [8] “Researchers Synthesize Barium Cobalt Oxide Thermoelectric Converter, Potential Source of Energy Conservation”, (2022.07.13) The Science Times, [9] “Efficient, stable, and eco-friendly thermoelectric material discovered”, (2022.07.13) Swift Telecast, [10] “Science News | Scientists Discover Reliable, Stable, and Environmentally Beneficial Thermoelectric Material”, (2022.07.13) Latest LY, [11] “Efficient, stable, and eco-friendly thermoelectric material discovered”, (2022.07.13) Eurek Alert!, [12] “Efficient, stable, and eco-friendly thermoelectric material discovered”, (2022.07.13) Scienmag, [13] “Efficient, Stable, And Eco-Friendly Thermoelectric Material Discovered — ScienceDaily”, (2022.07.13) Verve Times, [14] “Efficient, stable, and eco-friendly thermoelectric material discovered”, (2022.07.13) Yark Story, [15] “Efficient, stable, and eco-friendly thermoelectric material discovered — ScienceDaily”, (2022.07.13) News Leaflets, [16] “Efficient, stable, and eco-friendly thermoelectric material discovered”, (2022.07.13) Flipboard, [17] “Efficient, stable, and eco-friendly thermoelectric material discovered”, (2022.07.13) One News Page, [18] “Efficient, stable, and eco-friendly thermoelectric material discovered”, The blog 101, [19] “Efficient, stable and environmentally friendly thermoelectric material discovered”, (2022.07.13) Short Saveall, [20] “Efficient, Stable, And Eco-Friendly Thermoelectric Material Discovered”, (2022.07.13) Whatsnew2day, [21] “Environment friendly, secure, and eco-friendly thermoelectric material discovered”, (2022.07.13) Zipponews, [22] “New material revolutionizes the reuse of heat to generate electricity”, (2022.07.13) Tecno Break, [23] “Environment friendly, steady, and eco-friendly thermoelectric materials found”, (2022.07.13) Orlando News Station, [24] “Researchers Discover A Sustainable Thermoelectric Material”, (2022.07.13) electronics foru.com, [25] “Environment friendly, secure, and eco-friendly thermoelectric materials found”, (2022.07.13) TechSardar, [26] “Efficient, stable and environmentally friendly thermoelectric material discovered”, (2022.07.13) TrainersAdda, [27] “Environment friendly, secure, and eco-friendly thermoelectric materials found”, (2022.07.13) One Day Deals, [28] “EFFICIENT, STABLE, AND ECO-FRIENDLY THERMOELECTRIC MATERIAL DISCOVERED”, (2022.07.13) ITdigitalSeva, [29] “Efficient, stable and environmentally friendly thermoelectric material discovered”, (2022.07.13) Somjournal, [30] “Efficient, stable and environmentally friendly thermoelectric material discovered”, (2022.07.13) Trendradars, [31] “Efficient, stable, and eco-friendly thermoelectric material discovered”, (2022.07.13) MondayDaily, [32] “Efficient, stable, and eco-friendly thermoelectric material discovered”, (2022.07.13) Happy Euro Anime, [33] “Scientists discover reliable, stable, and environmentally beneficial thermoelectric material”, (2022.07.13) NewKerala.com, [34] “Environment friendly, secure, and eco-friendly thermoelectric materials found”, (2022.07.13) Frayd US, [35] “Environment friendly, secure, and eco-friendly thermoelectric materials discovered”, (2022.07.13) The movies

Press Release Turn an insulator into a high-temperature superconductor with a single electric switch! — A big step forward in the development of all-solid-state superconducting devices that do not use electrolytes — (Hokkaido Univ.) November 19, 2021

Xi Zhang*, Gowoon Kim, Qian Yang, Jiake Wei, Bin Feng, Yuichi Ikuhara, and Hiromichi Ohta*, “Solid-State Electrochemical Switch of Superconductor-Metal-Insulators”, ACS Appl. Mater. Interfaces 13, 54204-54209 (2021). (November 4, 2021) (DOI: 10.1021/acsami.1c17014)

[1] fabcross for エンジニア, “電気スイッチ一つで絶縁体を高超伝導体に繰り返し切り替え――全固体素子で液漏れの心配なし 北海道大” (2021.11.22), [2] マイナビニュース, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.22), [3] エキサイトニュース, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.22), [4] Mapionニュース, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.22), [5] dmenuニュース, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.22), [6] ニュースコレクト, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.22), [7] ニコニコニュース, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.22), [8] じもにゅー北海道, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.22), [9] 楽天Infoseek News, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.22), [10] 気になる車・バイクニュース, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.22), [11] NEWS PICKS, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.22), [12] しげろうたろうのブログ, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.23), [13] グノシー, “北大、電気スイッチ1つで絶縁体と超伝導体の繰り返し切り替えに成功” (2021.11.22)

Press Release A discovery that defied common wisdom! A single-crystal that is less likely to transfer heat than a polycrystalline — Guidelines for designing low thermal conductivity materials — (Hokkaido Univ.) February 15, 2021

Hai Jun Cho*, Yuzhang Wu, Yuqiao Zhang, Bin Feng, Masashi Mikami, Woosuck Shin, Yuichi Ikuhara, Yu-Miin Sheu, Keiji Saito, and Hiromichi Ohta*, “Anomalously Low Heat Conduction in Single-Crystal Superlattice Ceramics Lower than Randomly Oriented Polycrystals”, Adv. Mater. Interfaces 2001932 (2021). (February 15, 2021) (DOI: 10.1002/admi.202001932)

[1] OPTRONICS ONLINE, “北大ら,多結晶より熱が伝わりにくい単結晶を発見” (2021.2.16)

Press Release Record-high room temperature thermoelectric figure of merit for metal oxides − Great expectations for the realization of stable and practical thermoelectric conversion materials − (RIES, Hokkaido Univ.) November 4, 2020

Record-setting thermoelectric figure of merit achieved for metal oxides (Hokkaido Univ.) December 23, 2020

Yugo Takashima, Yu-qiao Zhang*, Jiake Wei, Bin Feng, Yuichi Ikuhara, Hai Jun Cho, and Hiromichi Ohta*, “Layered cobalt oxide epitaxial films exhibiting thermoelectric ZT = 0.11 at room temperature”, J. Mater. Chem. A 9, 274 – 280 (2021). (October 13, 2020) (DOI: 10.1039/D0TA07565E)

[1] fabcross for エンジニア, “過去最高の熱電変換性能指数を示す層状コバルト酸化物を実現――安定で実用的な熱電変換材料として期待 北海道大学” (2020.11.04), [2] マイナビニュース, “北大、室温において過去最高クラスの熱電変換性能を持つ物質を実現” (2020.11.04), [3] ニコニコニュース, “北大、室温において過去最高クラスの熱電変換性能を持つ物質を実現” (2020.11.04), [4] グノシー, “北大、室温において過去最高クラスの熱電変換性能を持つ物質を実現” (2020.11.04), [5] 日本の研究.comニュース, “【注目プレスリリース】金属酸化物における過去最高の室温熱電変換性能指数―安定で実用的な熱電変換材料の実現に大きな期待― / 北海道大学” (2020.11.04), [6] Mapionニュース, “北大、室温において過去最高クラスの熱電変換性能を持つ物質を実現” (2020.11.04), [7] 楽天Infoseek News, “北大、室温において過去最高クラスの熱電変換性能を持つ物質を実現” (2020.11.04), [8] NEWS Collect, “北大、室温において過去最高クラスの熱電変換性能を持つ物質を実現” (2020.11.04), [9] gooニュース, “北大、室温において過去最高クラスの熱電変換性能を持つ物質を実現” (2020.11.04), [10] BOGLOBEニュース, “北大、室温において過去最高クラスの熱電変換性能を持つ物質を実現” (2020.11.04), [11] Phys.org, “Researchers develop layered cobalt oxide with a record-setting thermoelectric figure of merit” (2020.12.23), [12] EurekAlert!, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.22), [13] AZO Materials, “New Layered Cobalt Oxide Exhibits Highest-Ever Thermoelectric Figure of Merit” (2020.12.23), [14] FLORIDA NEWS TIMES, “Researchers are developing layered cobalt oxide with a record thermoelectric figure of merit” (2020.12.24), [15] Newsbeezer.com, “The researchers are developing layered cobalt oxide with a record-breaking thermoelectric figure of merit” (2020.12.24), [16] Asia Research News, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.24), [17] fooshya.com, “Researchers develop layered cobalt oxide with a record-setting thermoelectric determine of advantage” (2020.12.23), [18] BrightSurf Science News, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.22), [19] Science Magazine, “Record-Setting Thermoelectric Figure Of Merit Achieved For Metal Oxides” (2020.12.23), [20] The Human Exposome Project, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.22), [21] ZENITH NEWS, “Researchers develop layered cobalt oxide with a record-setting thermoelectric figure of merit” (2020.12.23), [22] X-MOL, “Layered cobalt oxide epitaxial films exhibiting thermoelectric ZT = 0.11 at room temperature” (2020.10.13), [23] TIMES NEWS EXPRESS, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.22), [24] iEmpresarial, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.26), [25] Nanotechnology Now, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.29), [26] Health Medicine Network, “Record-setting thermoelectric figure of merit achieved for metal oxides”, [27] Bioengineer.org, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.23), [28] Nanowerk, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.23), [29] Science Codex, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.22), [30] MIRAGE, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.23), [31] AlphaGalileo, “Record-setting thermoelectric figure of merit achieved for metal oxides” (2020.12.23)

Press Release Transparent Transistor that Transmits Deep Ultraviolet – Novel Biosensor – (RIES, Hokkaido Univ.) June 16, 2020

Mian Wei, Lizhikun Gong, Dou-dou Liang, Hai Jun Cho*, and Hiromichi Ohta*, “Fabrication and Operating Mechanism of Deep-UV Transparent Semiconducting SrSnO3-based Thin Film Transistor”, Advanced Electronic Materials 6, 2000100 (2020). (DOI: 10.1002/admi.202000100)

[1] OPTRONICS ONLINE, “北大,DUVを透過する透明トランジスタを実現” (2020.6.16), [2] fabcross for エンジニア, “深紫外線を透過する透明な薄膜トランジスタを作製――殺菌灯照射下でも動作可能な新バイオセンサーへの応用に期待 北海道大学” (2020.6.17), [3] e.x.press, “深紫外線線を透過する透明なトランジスタを実現” (2020.6.24)

Press Release Caught a glimpse of the operation mechanism of advanced memory device! (RIES, Hokkaido University) November 11, 2019

Qian Yang, Hai Jun Cho, Hyoungjeen Jeen*, and Hiromichi Ohta*, “Macroscopic Visualization of Fast Electrochemical Reaction of SrCoOx Oxygen Sponge”, Adv. Mater. Interfaces 1901260 (2019). (DOI: 10.1002/admi.201901260)

[1] OPTRONICS ONLINE, “北大ら, 電気化学酸化反応を可視化” (2019.11.11), [2] Fabcross for エンジニア, “熱電特性と導電性原子間力顕微鏡観察を組み合わせた新可視化手法を開発――次世代情報記憶素子の開発を加速 北海道大学ら” (2019.11.11), [3] EE Times Japan, “北海道大学と釜山大学校:情報記憶素子用材料の電気化学酸化反応を可視化 – 熱電特性の計測と導電性原子間力顕微鏡観察を組み合わせ -“ (2019.11.12)

Press Release Electron sandwich doubles thermoelectric performance (Hokkaido Univ., Univ. Tokyo, Kyoto Univ., NCTU) June 20, 2018

Y. Zhang, B. Feng, H. Hayashi, C-P. Chang, Y-M. Sheu, I. Tanaka, Y. Ikuhara, and H. Ohta*, “Double thermoelectric power factor of a 2D electron system”, Nature Communications 9, 2224 (2018).

[1] “Electron Sandwich Doubles Thermoelectric Performance”, I Connect 007, June 20, 2018, [2] “Electron Sandwich Doubles Thermoelectric Performance”, Chem Europe.com, June 21, 2018, [3] “Electron Sandwich Doubles Thermoelectric Performance”, Tech Explorist, June 20, 2018, [4] “Electron Sandwich Doubles Thermoelectric Performance”, Photonics Online, June 20, 2018, [5] “Electron Sandwich Doubles Thermoelectric Performance”, Spinoff.com, June 20, 2018, [6] “Electron Sandwich Doubles Thermoelectric Performance”, Phys.org, June 20, 2018, [7] “Artificial Superlattice Yields Higher Voltage and Improves Thermoelectric Conversion Rate”, AZO Materials, June 21, 2018, [8] “Electron sandwich doubles thermoelectric performance”, EurekAlert!, June 20, 2018, [9] “Electron sandwich doubles thermoelectric performance”, Science Daily, June 20, 2018, [10] “交通大學與北海道大學跨校合作 研發電子三明治使熱電性能倍增”, National Chiao Tung University, June 20, 2018, [11] “Electron sandwich doubles the thermoelectric performance!”, Device & Materials Engineering, Nature Research, June 20, 2018, [12] “Electron sandwich doubles thermoelectric performance”, Science & Technology Research News, June 20, 2018, [13] “Electron sandwich doubles thermoelectric performance”, Revolution Green, June 21, 2018, [14] “Electron sandwich doubles thermoelectric performance, BrightSurf.com, June 20, 2018, [15] “Electron sandwich doubles thermoelectric efficiency (News)”, PressCute.com, June 20, 2018, [16] “Electron sandwich doubles thermoelectric performance”, Green Car Congress, June 25, 2018, [17] “Electron sandwich doubles thermoelectric performance”, Innovations Report, June 20, 2018, [18] “Artificial Superlattice Yields Higher Voltage and Improves Thermoelectric Conversion Rate”, Converter News, June 21, 2018, [19] “Tech: Electron sandwich doubles thermoelectric performance — (Report)”, TuniseSoir News, June 20, 2018

Press Release Reusing waste energy with 2D electron gas (Hokkaido Univ., SKKY, AIST) November 20, 2017

H. Ohta*, S.W. Kim, S. Kaneki, A. Yamamoto, and T. Hashizume*, “High thermoelectric power factor of high-mobility two-dimensional electron gas”, Advanced Science 4, 1700696 (2017).

[1] “Method for recycling waste energy with 2D electron gas developed”, Electronics 360, November 20, 2017 [2] “Reusing waste energy with 2-D electron gas”, Science Daily, November 20, 2017 [3] “Reusing waste energy with 2-D electron gas”, Technology Breaking News, November 20, 2017 [4] “Reusing waste energy with 2-D electron gas”, EurekAlert!, November 20, 2017 [5]  “Reusing waste energy with 2-D electron gas”, Phys.org, November 20, 2017 [6] “Reusing waste energy with 2-D electron gas”, Science Newsline, November 20, 2017 [7] “Reusing waste energy with 2D electron gas”, Humanitarian News, November 20, 2017 [8] “Reusing waste energy with 2-D electron gas”, Physics News, November 20, 2017 [9] “Reusing waste energy with 2D electron gas”, EnviromentGuru, November 20, 2017 [10] “Reusing waste energy with 2-D electron gas”, The Expanding Universe, November 20, 2017 [11] “Reusing waste energy with 2-D electron gas”, 15 Minute News, November 20, 2017 [12] “Reusing waste energy with 2-D electron gas”, Parallel State, November 20, 2017 [13] “Reusing waste energy with 2-D electron gas”, My News, November 20, 2017 [14] “Reusing waste energy with 2-D electron gas”, HiTechDays, November 20, 2017 [15] “Reusing waste energy with 2-D electron gas”, News Locker, November 20, 2017 [16] “Reusing waste energy with 2-D electron gas”, telezkope, November 20, 2017 [17] “Reusing waste energy with 2-D electron gas”, Energy Daily, November 23, 2017

Press Release The switch that could double USB memory (Hokkaido Univ.) March 30, 2016

T. Katase, Y. Suzuki, and H. Ohta, “Reversibly switchable electromagnetic device with leakage-free electrolyte”, Advanced Electronic Materials 2, 1600044 (2016).

[1]  “Double memory storage with magnetic and electric signals”, COSMOS Magazine, 12 July, 2016 [2] “磁電雙穩態材料倍增儲存容量”, EET Taiwan, 12 July, 2016 [3] “New Device Could Double USB Storage Capacity”, Electronics 360, 11 July, 2016 [4] “Hitting The Magnetic Switches”, Tom’s Hardware, July 9, 2016 [5] “The switch that could double USB memory”, Space Daily, 6 July 2016 [6] “The switch that could double USB memory”, RtoZ.org, July 3, 2016 Youtube [7] “The Switch That Could Double USB Memory”, Technobahn, 2 July, 2016 [8] “The Switch That Could Double USB Memory”, Science Newsline Technology, 2 July, 2016 [9] “A New Method to Double USB Memory”, Iscanews, July 2, 2016 [10] “The switch that could double USB memory”, News Dog, July 2, 2016 [11] “Switching States To Deliver Double USB Memory”, Crazy Engineers, July 2, 2016 [12] “The switch that could double USB memory”, new electronics, 1 July, 2016 [13] “Magnetic switch holds promise for double capacity solid state storage”, truemag, 28 June, 2016 [14] “Magnetic switch holds promise for double capacity solid state storage”, gizmag, June 28, 2016 [15] “The switch that could double USB memory”, Science Daily, June 24, 2016 [16] “The switch that could double USB memory”, Phys.org, 24 June, 2016

Research grants (18)

18. FY2023 Bilateral Joint Seminar (JSPS) with Korea (NRF) “The 4th Workshop on Functional Materials Science”, PI: Hiromichi Ohta (Japan), Hyongjeen Jeen (Korea), June 18 – 21 , 2023 – Busan, South Korea

17. Grant-in-Aid for Scientific Research A from JSPS 22H00253 “Creation of Solid-State Thermal Transistor”  (PI) FY2022-FY2025

16. 35th The Murata Science Foundation, The 3rd Workshop on Functional Materials Science, December 18th – 20th, 2019.

15. Grant-in-Aid for Scientific Research on Innovative Areas (6103) New Materials Science on Nanoscale Structures and Functions of Crystal Defect Cores 19H05791 “Fabrication of highly functional thin film materials by controlling interface”  (PI) FY2019-FY2023

14. FY2018 Bilateral Joint Research Projects (JSPS) with Korea (NRF) “Functionalization of layered transition metal oxides toward energy applications”, PI: Hiromichi Ohta (Japan), Hyongjeen Jeen (Korea), April 2018-March 2020

13. Research Grants in the Natural Sciences from the Mitsubishi Foundation “Materials improvement towards low voltage-high speed operation of WO3 based three terminal thin-film transistor” (PI) October 2017-September 2018

12. Grant-in-Aid for Scientific Research A from JSPS 17H01314 “Thermal conductivity clarification of nanometer period parallel plate structure toward high ZT thermoelectric materials”  (PI) FY2017-FY2020

11. Continuation Grants for Outstanding Projects from the Asahi Glass Foundation “Electric field thermopower modulation of two-dimensional electron gas at semiconductor heterointerfaces” (PI) FY2017-FY2019

10. Research Encouragement Grants from the Asahi Glass Foundation “Development of general-purpose thermopower measuring equipment for ultra-fine thermoelectric materials” (PI) FY2014-FY2015

9. Grant-in-Aid for Scientific Research on Innovative Areas (2505) Nanoinformatics 25106007 “Materials function exploration by atomic layer control”  (PI) FY2013-FY2017

8. Grant-in-Aid for Scientific Research B from JSPS 26287064 “Electron transport properties of photo-doped conductor” (PI: Prof. Ichiro Terasaki, Nagoya University) FY2014-FY2017

7. Grant-in-Aid for Scientific Research A from JSPS 25246023 “Electric field generation and giant thermopower modulation of one-dimensional electron gas in oxide semiconductors” (PI) FY2013-FY2016

6. Grant-in-Aid for Scientific Research B from JSPS 22360271 “Electric field modulation of giant thermopower in oxide thin film transistors and its application for IR sensor” (PI) FY2010-FY2012

5. Grant-in-Aid for Scientific Research on Priority Areas “Atomic Scale Modification” 22015009 “Visualization of electric field induced two-dimensional electron layer” (PI) FY2010-FY2011

4. PRESTO, Japan Science and Technology Agency “Electric field induced two-dimensional conducting layer: Thermopower and its control” (PI) FY2009-FY2011

3. Grant-in-Aid for Scientific Research on Priority Areas “Atomic Scale Modification”  20047007 “Electronic state of two-dimensional electron gas at dielectric heterointerfaces and the origin of quantum size effect” (PI) FY2008-FY2009

2. Grant-in-Aid for Young Scientists A from the Ministry of Education, Culture, Sports, Science and Technology 18686054 “Fabrication and thermoelectric properties of oxide superlattices with two-dimensional electron gas” (PI) FY2006-FY2008

1. The Industrial Technology Research Program in 2005 from NEDO (New Energy and Industrial Technology Development Organization)(ID 05A23509d) “Fabrication and Application of oxide superlattices with two-dimensionally confined electron gas” (PI) January 1, 2006-December 31, 2008

Self-introduction

When I was an elementary school student, there were many breeding cases of various insects in my house. It was my routine work to record how the insects emerge. When I was in high school I really liked “chemistry” and I entered a university where I can study chemistry expertly. When I was in the 4th grade of the university, I entered to the ceramic-related laboratory. When I was a child, I usually read a cartoon “Yoroshiku Mechanical Doctor (よろしくメカドック)”. In the cartoon, they made a dreamlike engine using ceramics. This is the reason why I selected the ceramic-related laboratory.

After studying ceramics at the university and graduate school, I wanted to continue doing research on ceramics related to automobiles. I took an entrance examination by a certain car company. Unfortunately, my dreams did not come true. When I consulted with the secretary at the laboratory, I was advised by Sanyo Electric Co., Ltd. and joined Sanyo Electric employment examination (1996). The work was research and development of lithium-ion batteries. I was deeply involved in ceramics, but it was rather a task close to the development.

When I thought that I want to do more research, I was invited as a researcher from HOYA R&D center, and in January 1998, I moved to HOYA. In addition, in October of the same year, I entered the doctoral course at Tokyo Institute of Technology (supervisor: Professor Hideo Hosono). Professor Hosono started a research project of the Japan Science and Technology Agency (JST-ERATO project) in 1999, I joined his project. In the project, we conducted fundamental research on optoelectronic devices, which was so interesting that we were able to create some innovative devices together with the project members.

In 2003, I became an Associate Professor of Nagoya University, and in 2012 I became a full Professor at Research Institute for Electronic Science, Hokkaido University.

Since I was an elementary school student, I liked the research, so it seems that my research object has just changed from insects to solid materials. Also, as my father is a furniture craftsman and it is an influence that I have seen the furniture making process in the immediate neighborhood since I was a child.

My hobbies are driving cars, fly fishing, and snowboarding.

My car: A5 Sportback, Audi

Fly fishing at the river in Sapporo

Snowboarding at the ski resort in Sapporo