Profile

KATAYAMA, Tsukasa (片山 司)

katayama(at)es.hokudai.ac.jp

Room: Research Institute for Electronic Science 3F 03-108-1
TEL & FAX: +81-11-706-9430
keywords: Multiferroics, Flexible oxide thin films, Ferroelectric oxide thin films
orcid0000-0003-2010-3966

The date of birth June 10th, 1989
Blood type O
Home town Fukui
Hobby travel

Biography

Academic Background

2016  Ph.D, The University of Tokyo (Supervisor: Prof. Tetsuya Hasegawa)

2013  M.S., The University of Tokyo (Supervisor: Prof. Tetsuya Hasegawa)

2011  B.S., The University of Tokyo

2007  Graduation, Fukui Prefectural Fujishima High School

Professional Carrier

2021 – Current  Associate Professor at RIES, Hokkaido University

2019. 1-2021. 3 Assistant Professor at Department of Chemistry, School of Science, The University of Tokyo

2018. 1-2018. 12 Project Assistant Professor at Department of Chemistry, School of Science, The University of Tokyo

2016. 4-2017. 12 Post-doctoral Fellow at Institute of Innovative Research, Tokyo Institute of Technology

2014. 4-2016. 3 JSPS Research Fellowship for Young Scientists (DC2)

Research Interests

Functional oxide materials, Thin film materials, Physical properties, Applied physics

Original paper (66)

First author:24,  Corresponding author:32

[66] T. Katayama*, S. Mo, A. Chikamatsu, Y. Kurauchi, H. Kumigashira, and T. Hasegawa, “Half-metallicity and magnetic anisotropy in double-perovskite GdBaCo2O6 films prepared via topotactic oxidation” Chem. Mater. 35, 1295 (2023).

[65] T. Katayama*, K. Magara, A. Chikamatsu, and T. Hasegawa, “Anisotropic proton conduction in double-perovskite GdBaCo2O5” Appl. Phys. Lett. 123, 012902 (2023).

[64] S. Mo, T. Katayama*, A. Chikamatsu, and T. Hasegawa,“Grain engineered polar-axis-oriented epitaxial Mn2Mo3O8 films with enhanced magnetic transition temperature” J. Mater. Chem. C 11, 7427 (2023).

[63] R. Yu, L. Gong, H. Ohta, and T. Katayama*, “Ferroelectricity, high permittivity, and tunability in millimeter-size crack-free Ba1–xSrxTiO3 flexible epitaxial sheets” ACS Appl. Electron. Mater. 5, 9, 5234 (2023).

[62] B. Chen, and T. Katayama*, “Hexagonal RFeO3 (R = Dy, Er, and Lu) films grown on glass substrates with both magnetic and ferroelectric orders” ACS Appl. Electron. Mater. 5, 1, 344 (2023).

[61] L. Gong, R. Yu, H. Ohta, and T. Katayama*, “Synthesis and transparent conductivity of crack-free La:BaSnO3 epitaxial flexible sheets” Dalton Trans. 52, 6317 (2023).

[60] A. Nishida, T. Katayama, Y. Matsuo, “Atomic layer deposition of HfO2 films using tetrakis(1-(N,N-dimethylamino)-2-propoxy)hafnium [Hf(dmap)4] for advanced gate dielectrics applications” ACS Appl. Nano Mater. in press.

[59] A. Nishida, T. Katayama, Y. Matsuo, “Atomic layer deposition of Y2O3 films using novel liquid homoleptic yttrium precursor tris(sec-butylcyclopentadienyl)yttrium [Y(sBuCp)3] and Water” RSC Adv. 13, 27255 (2023).

[58] T. Katayama*, S. Mo, A. Chikamatsu, and T. Hasegawa, “Solid phase epitaxy of perpendicular magnetic BaFe12O19 flexible sheets on mica substrate” Jpn. J. Appl. Phys. 62 065505 (2023).

[57] L. Gong, M. Wei, R. Yu, H. Ohta, and T. Katayama*, “Significant suppression of cracks in freestanding perovskite oxide flexible sheets using a capping oxide layer” ACS Nano 16, 12, 21013 (2022).

[56] T. Nishimura, T. Katayama*, S. Mo, A. Chikamatsu, and T. Hasegawa, “Improvement of electric insulation in dielectric layered perovskite nickelate films via fluorination”, J. Mater. Chem. C 10, 1711 (2022).

[55] B. Chen, T. Hasegawa, H. Ohta, and T. Katayama*, “Antiferroelectric-to-ferroelectric phase transition in hexagonal rare-earth iron oxides”, J. Mater. Chem. C 10, 5621 (2022).

[54] Y. Zhang, T. Katayama, A. Chikamatsu, C. Schubler-Langeheine, N. Pontius, Y. Hirata, K. Takubo, K. Yamagami, K. Ikeda, K. Yamamoto, T. Hasegawa, and H. Wadati, “Photo-induced Antiferromagnetic-ferromagnetic and Spin-state Transition in GdBaCo2O5 Thin Film”, Commun. Phys. 5, 50 (2022).

[53] B. Chen, H. Ohta, and T. Katayama*, “Ferroelectric and magnetic properties of hexagonal ErFeO3 epitaxial films”, ACS Appl. Electron. Mater. 4, 4547 (2022).

[52] T. Maruyama, Y. Hirose, T. Katayama, Y. Sugisawa, D. Sekiba, T. Hasegawa, and A. Chikamatsu, “Negative magnetoresistance in different nitrogen content EuNbO3-xNx single-crystalline thin films”, J. Mater. Chem. C 10, 14661 (2022).

[51] S. Fukuma, A. Chikamatsu, T. Katayama, T. Maruyama, K. Yanagisawa, K. Kimoto, M. Kitamura, K. Horiba, H. Kumigashira, Y. Hirose, and T. Hasegawa, “Crystal structure and electronic property modification of Ca2RuO4 thin films via fluorine doping”, Phys. Rev. Mater. 6, 035002 (2022).

[50] J. Kasahara, T. Katayama*, A. Chikamatsu, Y. Hamasaki and T. Hasegawa, “Epitaxial growth of hexagonal GdFeO3 thin films with magnetic order by pulsed laser deposition”, Thin Solid Films 757, 139409 (2022).

[49] T. Katayama*, A. Chikamatsu, and T. Hasegawa, “Ionic order and magnetic properties of double-perovskite GdBaCo2O5 films on SrTiO3 substrates”, J. Ceram. Soc. Jpn. 130, 429 (2022).

[48] Wang, T. Katayama*, C. Wang, Q. Li, Y. shi, Y. Fang, F. Huang, Y. Zhu, H. Li, S. Yasui, X. Huang and J. Yu, “Enhancement of room-temperature magnetization in GaFeO3-type single crystals by Al and Sc doping”, AIP Adv. 12, 065015 (2022).

[47] T. Katayama*, A. Chikamatsu, Y. Zhang, S. Yasui, H. Wadati and T. Hasegawa, “Ionic-order engineering in double-perovskite cobaltite”, Chem. Mater. 33, 5675 (2021).

[46] S. Mo, T. Katayama*, A. Chikamatsu, M. Kitamura, K. Horiba, H. Kumigashira, T. Hasegawa, “Epitaxial-strain-induced spontaneous magnetization in polar Mn2Mo3O8”  Chem. Mater. 33, 7713 (2021).

[45] J. Kasahara, T. Katayama*, S. Mo, A. Chikamatsu, Y. Hamasaki, S. Yasui, M. Itoh, and T. Hasegawa, “Room-temperature antiferroelectricity in multiferroic hexagonal rare-earth ferrites”, ACS Appl. Mater. Interfaces 13, 4230 (2021).

[44] T. Katayama*, S. Mo, Y. Kurauchi, A. Chikamatsu and T. Hasegawa, “Synthesis and Magnetism of MoCo2O4 Spinel Thin Films”, Thin Solid Films 728, 138696 (2021).

[43] A. Chikamatsu, T. Katayama, T. Maruyama, M. Kitamura, K. Horiba, H. Kumigashira, H. Wadati, and T. Hasegawa, “Investigation of the electronic states of A-site layer-ordered double perovskite YBaCo2Ox (x = 5.3 and 6) thin films by X-ray spectroscopy”, Appl. Phys. Lett. 118, 012401 (2021).

[42] Y. Hamasaki, S. Yasui, T. Katayama, T. Kiguchi, S. Sawai and M. Itoh, “Ferroelectric and magnetic properties in ε-Fe2O3 epitaxial film”, Appl. Phys. Lett. in press.

[41] Y. Zhang, H. Wang, K. Tachiyama, T. Katayama*, Y. Zhu, S. Wu, H. Li, J. Fang, Q. Li, Y. Shi, L. Wang, Z. Fu, F. Xu, J. Yu, S. Yasui, and M. Itoh, “Single-crystal synthesis of ε-Fe2O3-type oxides exhibiting room-temperature ferrimagnetism and ferroelectric polarization”, Cryst. Growth Des. 21, 4904 (2021).

[40] H. Wang, Y. Zhang, K. Tachiyama, Z. Xia, J. Fang, Q. Li, G. Cheng, Y. Shi, J. Yu, T. Katayama, S. Yasui, M. Itoh, “Large polarization switching and high-temperature magnetoelectric coupling in multiferroic GaFeO3 systems”, Inorg. Chem. 60, 1, 225 (2021).

[39] K. Gu, T. Katayama*, S. Yasui, A. Chikamatsu, S. Yasuhara, M. Itoh, and T. Hasegawa, “Simple method to obtain large-size single-crystalline oxide sheets”, Adv. Funct. Mater. 30, 2001236 (2020).

[38] Y. Hamasaki, T. Katayama, S. Yasui, T. Shiraishi, A. Akama, T. Kiguchi, T. Taniyama, and M. Itoh, “Switchable third ScFeO3 polar ferromagnet with YMnO3-type structure”, J. Mater. Chem. C 8, 4447 (2020).

[37] T. Maruyama, A. Chikamatsu, T. Katayama, K. Kuramochi, H. Ogino, M. Kitamura, K. Horiba, H. Kumigashira, and T. Hasegawa, “Influence of fluorination on electronic states and electron transport properties of Sr2IrO4 thin films”, J. Mater. Chem. C 8, 8268 (2020).

[36] B. N. Rao, S. Yasui, T. Katayama, A. Taguchi, H. Moriwake, Y. Hamasaki, and M. Itoh, “Investigation of ferrimagnetism and ferroelectricity in AlxFe2-xO3 thin films”, J. Mater. Chem. C 8, 706 (2020).

[35] S. Yasuhra, Y. Hamasaki, T. Katayama, T. Ao, Y. Inaguma, H. Hojo, M. Karppinen, A. Philip, S. Yasui, and M. Itoh, “Modulating the Structure and Magnetic Properties of ε-Fe2O3Nanoparticles via Electrochemical Li+ Insertion”, Inorg. Chem. 59, 7, 4357 (2020).

[34] A. Chikamatsu, T. Maruyama, T. Katayama, Y. Su, Y. Tsujimoto, K. Yamaura, M. Kitamura, K. Horiba, H. Kumigashira, and T. Hasegawa, “Electronic properties of perovskite strontium chromium oxyfluoride epitaxial thin films fabricated via low-temperature topotactic reaction”, Phys. Rev. Mater. 4, 025004 (2020).

[33] B. N. Rao, S. Yasui, Y. Han, Y. Hamasaki, T. Katayama, T. Shirashi, T. Kiguchi, and M. Itoh, “Redox-based multilevel resistive switching in AlFeO3 thin-film heterostructures”, ACS Appl. Electron. Mater. 2, 4, 1065 (2020).

[32] T. Katayama*, S. Mo, T. Maruyama, A. Chikamatsu, and T. Hasegawa, “Reactive Solid Phase Epitaxy of Layered Aurivillius-type Oxyfluorides Bi2TiO4F2 using Polyvinylidene Fluoride”, Dalton Trans. 48, 5425 (2019).

[31] T. Katayama*, Y. Kurauchi, S. Mo, K. Gu, A. Chikamatsu, and T. Hasegawa, “p-type conductivity and room-temperature ferrimagnetism in spinel MoFe2O4 epitaxial thin film”, Cryst. Growth Des. 19, 902 (2019).

[30] T. Katayama*, A. Chikamatsu, H. Kumigashira, and T. Hasegawa, “Improved crystalline quality and electric conductivity in infinite-layer SrFeO2 films through Sm substitution”, Appl. Phys. Lett. 114, 232906 (2019).

[29] Y. Kurauchi, T. Katayama*, A. Chikamatsu, T. Hasegawa, “Two-dimensional fluorine distribution in a heavily distorted perovskite nickel oxyfluoride revealed by first-principles calculation”, J. Phys. Chem. C 123, 31190 (2019).

[28] S. Mo, Y. Kurauchi, T. Katayama*, Y. Hirose, and T. Hasegawa, “Theoretical investigation of the role of the nitride Ion in the magnetism of oxynitride MnTaO2N”, J. Phys. Chem. C 123, 25379 (2019).

[27] A. Chikamatsu, Y. Suzuki, T. Maruyama, T. Onozuka, T. Katayama, D. Ogawa, and T. Hasegawa, “Selective fluorination of perovskite iron oxide/ruthenium oxide heterostructures via a topotactic reaction”, Chem. Commun. 55, 2437 (2019).

[26] S. Yasui, T. Katayama, T. Osakabe, Y. Hamasaki, T. Taniyama, and M. Itoh, “Ferroelectric and Ferrimagnetic properties of ε-RhxFe2-xO3 thin films”, J. Ceram. Soc. Jpn. 127, 474 (2019).

[25] K. Tachiyama, S. Yasui, B. N. A. Rao, T. Dazai, T. Usami, T. Taniyama, T. Katayama, Y. Hamasaki, J. Yu, H. He, H. Wang, and M. Itoh, “Magnetic Properties of Single Crystal GaFeO3”, MRS Adv. 4, 61 (2019).

[24] . N. A. Rao, S. Yasui, T. Katayama, and M. Itoh, “Fabrication and Characterization of Multiferroic Al5Fe1.5O3 Epitaxial Thin Films”, MRS Adv. 4, 539 (2019).

[23] M. Zhang, S. Yasui, T. Katayama, B. N. Rao, H. Wen, X. Pan, M. Tang, F. Ai, and M. Itoh, “Epitaxial Growth of Orthorhombic GaFeO3Thin Films on SrTiO3(111) Substrates by Simple Sol-gel Method”, Materials 12, 254 (2019).

[22] T. Katayama*, S. Yasui, Y. Hamasaki, T. Shiraishi, A. Akama, T. Kiguchi, and M. Itoh, “Ferroelectric and magnetic properties in room-temperature multiferroic GaxFe2-xO3 epitaxial thin films”, Adv. Funct. Mater. 28, 1704789 (2018).

[21] T. Katayama*, S. Yasui, T. Osakabe, Y. Hamasaki, and M. Itoh, “Ferrimagnetism and ferroelectricity in Cr-substituted GaFeO3 epitaxial films”, Chem. Mater. 30, 1436 (2018).

[20] T. Katayama, A. Chikamatsu, Y. Hirose, M. Minohara, H. Kumigashira, I. Harayama, D. Sekiba, and T. Hasegawa, “Ferromagnetism with strong magnetocrystalline anisotropy in A-site ordered perovskite YBaCo2O6 epitaxial thin film prepared via wet-chemical topotactic oxidation”, J. Mater. Chem. C 6, 3445 (2018).

[19] T. Katayama*, T. Osakabe, S. Yasui, Y. Hamasaki, B. N. Rao, M. Zhang, and M. Itoh, “Effect of Cr Substitution on Ferrimagnetic and Ferroelectric Properties of GaFeO3 Epitaxial Thin Films”,  Appl. Phys. Lett. 113, 162901 (2018).

[18] A. Chikamatsu, K. Kawahara, T. Shiina, T. Onozuka, T. Katayama, T. Hasegawa, “Fabrication of fluorite-type fluoride Ba5Bi0.5F2.5 thin films by fluorination of perovskite BaBiO3 precursors with polyvinylidene fluoride”,  ACS Omega 3, 13141 (2018).

[17] T. Katayama*, S. Yasui, Y. Hamasaki, T. Osakabe, and M. Itoh, “Chemical tuning of room-temperature ferrimagnetism and ferroelectricity in ε-Fe2O3-type multiferroic oxide thin films”, J. Mater. Chem. C 5, 12597 (2017).

[16] T. Katayama*, S. Yasui, Y. Hamasaki, and M. Itoh, “Control of crystal-domain orientation in multiferroic Ga6Fe1.4O3 epitaxial thin films”, Appl. Phys. Lett. 110, 212905 (2017).

[15] T. Onozuka, A. Chikamatsu, T. Katayama, Y. Hirose, I. Harayama, D. Sekiba, E. Ikenaga, M. Minohara, H. Kumigashira, and T. Hasegawa, “Reversible changes in resistance of perovskite nickelate NdNiO3 thin films induced by fluorine substitution”, ACS Appl. Mater. Interfaces9, 10882 (2017).

[14] K. Kawahara, A. Chikamatsu, T. Katayama, T. Onozuka, D. Ogawa, K. Morikawa, E. Ikenaga, Y. Hirose, I. Harayama, D. Sekiba, T. Fukumura, and T. Hasegawa, “Topotactic fluorination of perovskite strontium ruthenate thin films using polyvinylidene fluoride”,  CrystEngComm 19, 313 (2017).

[13] Y. Kurauchi, H. Kamisaka, T. Katayama, A. Chikamatsu, T. Hasegawa, “First-principles calculations on the crystal/electronic structure and phase stability of H-doped SrFeO2”, J. Phys. Chem. C 121, 7478 (2017).

[12] T. Katayama*, Y. Hamasaki, S. Yasui, A. Miyahara, M. Itoh, “Epitaxial thin film growth of garnet-, GdFeO3-, and YMnO3-type LuFeO3 using pulsed laser deposition”, Thin Solid Films 642, 41 (2017).

[11] T. Katayama*, S. Yasui, Y. Hamasaki, and M. Itoh, “Electric transport characteristics of gallium iron oxide epitaxial thin film”, MRS Adv. 2, 3459 (2017).

[10] T. Onozuka, A. Chikamatsu, T. Katayama, T. Fukumura and T. Hasegawa, “Formation of defect-fluorite structured NdNiOxHy epitaxial thin films via soft chemical route from NdNiO3 precursor”, Dalton Trans. 45, 12114 (2016).

[9] T. Katayama, A. Chikamatsu, H. Kamisaka, H. Kumigashira, and T. Hasegawa, “Experimental and theoretical investigation of electronic structure of SrFeO3-xFx epitaxial thin films prepared via topotactic reaction”,  Appl. Phys. Express 9, 025801 (2016). (Selected as Spotlight)

[8] T. Katayama, A. Chikamatsu, K. Yamada, K. Shigematsu, T. Onozuka, M. Minohara, H. Kumigashira, E. Ikenaga, and T. Hasegawa, “Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films”, J. Appl. Phys. 120, 085305 (2016).

[7] T. Katayama, A. Chikamatsu, T. Fukumura, and T. Hasegawa, “Topotactic reductive synthesis of A-site cation-ordered perovskite YBaCo2Ox (x = 4.5−5.5) epitaxial thin films”, Jpn. J. Appl. Phys. 55, 04EJ05 (2016).

[6] K. Kurita, A. Chikamatsu, K. Shigematsu, T. Katayama, H. Kumigashira, T. Fukumura, T. Hasegawa, “Effects of Cr substitution on the magnetic and transport properties and electronic states of SrRuO3 epitaxial thin films”, Phys. Rev. B 92, 115153 (2015).

[5] T. Katayama, A. Chikamatsu, Y. Hirose, T. Fukumura, and T. Hasegawa, “Topotactic reductive fluorination of strontium cobalt oxide epitaxial thin films”, J. Sol-Gel Sci. Technol. 73, 527 (2015).

[4] T. Katayama, A. Chikamatsu, H. Kamisaka, Y. Yokoyama, Y. Hirata, H. Wadati, T. Fukumura, and T. Hasegawa, “Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure”, AIP Adv. 5, 107147 (2015).

[3] T. Katayama, A. Chikamatsu, Y. Hirose, R. Takagi, H. Kamisaka, T. Fukumura, and T. Hasegawa, “Topotactic fluorination of strontium iron oxide thin films using polyvinylidene fluoride”, J. Mater. Chem. C 2, 5350 (2014).

[2] T. Katayama, A. Chikamatsu, Y Hirose, H. Kumigashira, T. Fukumura, and T. Hasegawa, “Metallic conductivity in infinite-layer strontium iron oxide thin films reduced by calcium hydride”, J. Phys. D: Appl. Phys. 47, 135304 (2014).

[1] A. Chikamatsu, T. Matsuyama, T. Katayama, Y. Hirose, H. Kumigashira, M. Oshima, T. Fukumura, T. Hasegawa, “Electronic and transport properties of Eu-substituted infinite-layer strontium ferrite thin films”, J. Cryst. Growth 378, 165 (2013).